A Metric for Evaluation of Mapped QuikSCAT Wind Products

Kathryn A. Kelly
Suzanne Dickinson
Applied Physics Lab
University of Washington, Seattle, USA

OVWST Meeting
Barcelona, Spain
May 2010
The influence of SST and surface heat fluxes on midlatitude storms
J. F. Booth, L. Thompson, J. Patoux, K. A. Kelly

SST effects a storm’s warm sector and moisture fluxes feed the storm’s growth (Booth et al. 2010)

No correlation between a storm’s intensification and temporal variability of SST

Storm passing through the Gulf Stream region. Wind vectors, storm path (pink) and SST for a storm on Feb 24, 2001.
Assessment of Surface Heat Fluxes in Storms Modeled by WRF

QuikSCAT confirms that WRF:
• reproduces storm shapes and positions well
• underestimates wind speeds over unstable regions
• has flux biases from WRF boundary layer scheme
• air-sea temperature difference (not winds) are responsible for flux bias
Need for a Metric

• Users need ways to determine which product appropriate for their application.
• Maps made with same data (12.5 km QuikSCAT) have varying time and spatial grids (resolution?).
• Different maps have different strengths, purposes. Users need guidance from Science Team.
• Post-QuikSCAT there is even more of a need to evaluate products (not homogeneous over time).
Mapping Scatterometer Data

• Assimilate data into NWP
• Blend data with other sources
• Average data in time (reduce aliasing)
Taylor Diagram: evaluate correlation and magnitude

Taylor diagram: plot correlation and magnitude in polar coordinates.

Squared error

$$< \varepsilon^2 > = < d_m^2 > + < d_o^2 > - 2 < d_m d_o >$$ \hspace{1cm} (2)

From law of cosines

$$< \varepsilon^2 > = \sigma_m^2 + \sigma_o^2 - 2 \sigma_m \sigma_o \cos \theta$$ \hspace{1cm} (3)

By definition,

$$< d_m^2 > = \sigma_m^2, < d_o^2 > = \sigma_o^2$$

$$\rho = \cos \theta \quad \text{or} \quad \theta = \cos^{-1} \rho$$ \hspace{1cm} (4)

$$< \varepsilon^2 > = \sigma_m^2 + \sigma_o^2 - 2 \sigma_m \sigma_o \cos^{-1} \rho$$ \hspace{1cm} (5)

Normalized Taylor diagram gives relative error ε / σ_o

$$\frac{< \varepsilon^2 >}{\sigma_o^2} = \frac{\sigma_m^2}{\sigma_o^2} + 1 - 2 \sigma_m \cos^{-1} \rho$$ \hspace{1cm} (6)

“Normalized error” ε
Vector Correlations: use a version with compatible with scalar

Time series of observations $v_o(t) = u_o(t) + iv_o(t)$ and estimate $v_m(t) = u_m(t) + iv_m(t) + \varepsilon$

Correlation of anomalies

$$r = \frac{v_m^* v_o}{\sigma(v_m)\sigma(v_o)};$$

This version of complex correlation gives:

- magnitude of r: 0-1
- angle between vectors
In-situ Data – Open Ocean

Two research moorings located in Western Boundary Currents. These are regions of high currents and steep SST gradients.

CLIMODE Mooring: Nov ’05 – Jan ’07 (14 mos) sonic anemometer

CLlvar MOde Water Dynamics Experiment (NSF)

KEO Mooring: Jun ’04 – Jul ’08 (4 years with gaps) sonic anemometer

Kuroshio Extension Observatory Pacific Marine Environmental Lab (NOAA)
In-situ Data – Near Land

Five buoys located in the Aegean Sea. Land contaminates the scatterometer signal. Variable winds persist on scales on the order of the QuikSCAT footprint.

Aegean Sea Buoys: Jul ‘99 – May ’04 (5 years with gaps)

Poseidon System, Hellenic Centre for Marine Research (EFTA)

All in-situ winds converted to 10m in neutrally stratified atmosphere with COARE v3.0 algorithm.

- Metadata amended with ECMWF variables where needed.
- Used in-situ currents when available.

Winds below 3 m/s not included in analysis.
Mean Vectors at CLIMODE Mooring
Daily Wind Maps

- Kelly & Dickinson
 - daily, ½ degree

- Tang & Liu
 - 12-hourly, ½ degree

- Ifremer
 - daily, ½ degree

- NCEP2
 - daily, gaussian ~1.9 deg

- ECMWF
 - daily, gaussian, ~1.1 deg
Mean Vectors at CLIMODE Mooring
6-hourly Wind Maps

Cross-calibrated, multi-Platform
• 6-hourly, ¼ degree

Milliff (blended)
• 6-hourly, ½ degree

NCEP2-6h
• 6-hourly, gaussian, ~1.9 deg
Mean Vectors at CLIMODE Mooring Stress Maps

Kelly & Dickinson
• daily, ½ deg

Ifremer
• daily, ½ deg
Mean Vectors at CLIMODE Mooring
Pseudostress Maps

Center for Ocean-Atmosphere Predictions Studies
• 6-hourly, 1 deg
Taylor Diagram – CLIMODE Mooring Daily Winds

Daily Winds

Magnitude ratio: Mapped satellite data / Smoothed buoy data

Correlation

K & D = 0.36
T & L = 0.72
Freret = 0.38
NCEP2 = 0.83
ECMWF = 0.28
Taylor Diagram – CLIMODE Mooring
6-hourly Winds

Daily Winds
- K & D = 0.36
- T & L = 0.72
- Ifremer = 0.38
- NCEP2 = 0.93
- ECMWF = 0.28

6-hourly Winds
- CCMP = 0.34
- Milliff = 0.40
- NCEP2-6h = 0.61

Correlation

Magnitude ratio: Mapped satellite data / Smoothed buoy data
Estimate Temporal Resolution

Procedure:
1) Smooth buoy winds at various intervals (3 hr, 6 hr, 12 hr, etc)
2) Compute “normalized error” between gridded product and smoothed buoy winds
3) Nominal resolution is interval with minimum normalized error
Normalized Error vs Averaging Bin
CLIMODE Mooring – Daily Winds
Normalized Error vs Average Bin
CLIMODE Mooring – 6-hourly Winds
Stress and Pseudostress Maps
CLIMODE Mooring

NOTE:

C_d for stress calculations at buoys and for Kelly & Dickinson maps, Large et al. 1994
Stress and Pseudostress Maps
CLIMODE Mooring
Taylor Diagram – KEO Mooring Daily and 6-hourly Winds

CLIMODE

Daily Winds
- K & D=0.39
- T & L=0.72
- HiTemer=0.36
- NCEP2=0.83
- ECMWF=0.28

6-hourly Winds
- CCM2=0.34
- MM5=0.64
- NCEP2 6h=0.61

Magnitude ratio: Mapped satellite data / Smoothed buoy data

Correlation

KEO

Daily Winds
- K & D=0.39
- T & L=0.69
- HiTemer=0.36
- NCEP2=0.62
- ECMWF=0.29

6-hourly Winds
- CCM2=0.32
- MM5=0.44
- NCEP2 6h=0.54

Magnitude ratio: Mapped satellite data / Smoothed buoy data

Correlation
Mean Vectors – Aegean Buoys

Daily Winds
6-hourly Winds
Stress
Pseudostress
Taylor Diagram – Aegean Buoys
Daily and 6-hourly Winds

CLIMODE

Aegean

Daily Winds
K & D=0.35
T & L=0.72
Htrem=0.36
NCEP2=0.92
ECMWF=0.28

6-hourly Winds
CCMP=0.94
Marr=0.46
NCEP2 6h=0.61

Correlation

Magnitude ratio: Mapped satellite data / Smoothed buoy data

Daily Winds
K & D=0.49
T & L=0.43
Htrem=0.52
NCEP2=0.59
ECMWF=0.47

6-hourly Winds
CCMP=0.49
Marr=0.16
NCEP2 6h=0.69

Correlation

Magnitude Ratio: Mapped satellite data / Smoothed buoy data
Normalized Error – Aegean Buoys
Daily and 6-hourly Winds

CLIMODE

Aegean
Conclusions

- Taylor diagram to represent both energy levels and correlation
- Determine temporal resolution of a particular product
- Metric robust with respect to different locations
- Based on buoy comparisons:
 a) Best daily products: ECMWF, K&D, Ifremer
 b) CCMP for 3-6-hourly product
- Next: test other products?
- Need other metrics such as spatial structure and derived fields
Mean Vectors – KEO Mooring

KEO Mooring winds weaker than GCMs and CCMP winds, (where CLIMODE speeds comparable)
Stress Maps at Aegean Buoys

CLIMODE

Aegean

![Graphs showing stress maps and correlation data for CLIMODE and Aegean.](image-url)
Stress Maps at KEO Mooring

CLIMODE

KEO

Normalized Error:

CLIMODE

Normalized Error:

Normalized Error:
Normalized Error – KEO Mooring Daily and 6-hourly Winds

CLIMODE

KEO