Post-EPS Scatterometer Performance Simulation

Ad.Stoffelen@knmi.nl
Maria Belmonte, UCAR
Jos de Kloe, KNMI

ESA Study

IOVWST, May 2010
Wind retrieval and noise model

- Kp noise
- Geophysical noise due to ocean variability
- Approximate retrieval functions
Geophysical noise

- Different kinds of FOVs are combined (views)
- Each WVC view represents a different areal mean
- The ocean surface is variable
- A geophysical error occurs due to ocean surface variability and WVC non-uniform sampling
- Mainly affects low winds

IOVWST, May 2010
Post EPS scatterometer (SCA)
[baseline requirements and options]

- Spatial resolution (25 km)
- Dynamic range (4-25 m/s)
- Radiometric resolution (~3-10% at 4 m/s)
- Swath coverage (95% in 48 hours for incidences between 20° and 60°)
 15% improvement with respect to ASCAT on MetOp

I - Fixed beam (ASCAT type)
II - Rotating beam (RFSCAT type)

Discarded: Ku-band (rain), pencil beam (skill), extended nadir coverage for ASCAT type

IOVWST, May 2010
Specify complete SCA arrangement:

1) **Antenna configuration**
 (C-band, single vs dual pol):
 - total power
 - dimensions
 - radiation pattern

2) **Radar waveform**
 (FM chirp, short vs long pulse):
 - PRF
 - chirp bandwidth
 - noise estimation

- Orbital model
- Pseudo Level 1B file

- Satellite position at time t
- WVC (25 km resolution cell)

IOVWST, May 2010
Radiometric resolution (NESZ and Kp)

1) NESZ (Noise Equivalent Sigma Zero) for a single look:

\[
NESZ = \frac{\sigma^0}{SNR} = \frac{k_B(T_0 + T_{eq})}{\lambda^2 \left(\frac{P_i G_{TX} G_{RX}}{R^4 \cdot L_{prop}}\right) \frac{B_{look}}{A_{look}}}
\]

\[
A_{look} = \Delta_{range} \Delta_{azimuth}
\]

2) Number of looks per node: \[N_{looks} = \frac{\Delta x \Delta y}{A_{look}}\] (reduce speckle)

3) Number of noise samples: \[N_{noise} = f_s T_{noise}\] (noise estimation)

Radiometric resolution:

\[
K_p^2 = \frac{\text{var}\{\sigma^0\}}{\langle \sigma^0 \rangle^2} = \frac{1}{N_{looks}} \left(1 + \frac{1}{SNR}\right)^2 + \frac{1}{N_{noise}} \left(\frac{1}{SNR}\right)^2
\]

IOVWST, May 2010
SCA end-to-end simulator

Input wind vector

Pseudo L1B file → GMF → Geophysical noise

Backscatter vector observation

Wind inversion

Output wind vector (minimum MLE solution)

\[MLE(w, \phi) = \frac{1}{\langle MLE \rangle} \sum_{i=1,...,N} \frac{|\sigma_i^0 - \sigma_{GMF,i}^0(w, \phi)|^2}{K_\rho(\sigma_i^0)^2} \]

P_{obs}(V_{out}|V_{in})

Pencil beam, Kp = 20%
9 m/s @ 90 deg
Outer swath

IOVWST, May 2010
Wind retrieval performance

$P_{\text{obs}}(V_{\text{out}}|V_{\text{in}})$

NWP prior (5 m2/s2)

$P_{\text{obs}}(V_{\text{out}}|V_{\text{in}}) * P_{\text{NWP}}$

1) Wind Vector RMS error
2) Ambiguity susceptibility
3) Wind biases (skewness)

For example:

$$RMS_{obs} (\vec{v}_{true}) = \left(\int |\vec{v} - \vec{v}_{true}|^2 p_{obs} (\vec{v} | \vec{v}_{true}) p_{bg} (\vec{v}) d^2v \right)^{1/2}$$

IOVWST, May 2010
Wind retrieval performance QSCAT/ASCAT

Vector RMS error

QSCAT
ASCAT

FoM

WVC number

FoM_{amb}

AMBIGUITY

IOVWST, May 2010
Climatology FoMs

Wind retrieval performance is dependent on input wind and across track distance

Use a climatology average over wind speeds (3-16 m/s)

IOVWST, May 2010
SCA assessment

Wind Vector RMS error across swath
IOVWST, May 2010
Conclusion

RFSCAT performs well compared to ASCAT configuration, but …

To consider: geophysical noise, HH polarization, resolution

To optimize: antenna pattern…

IOVWST, May 2010
Thank you!

scat@knmi.nl
www.knmi.nl/scatterometer

IOVWST, May 2010
Backup Slides

IOVWST, May 2010
Wind retrieval and noise model

✓ Kp noise
✓ Geophysical noise due to ocean variability
✓ Approximate retrieval functions
GMF issues

- Measured triplets are centered well on cone within Kp for all speeds
- Geophysical noise at low winds incorporated
- Reasonable symmetry at medium-high winds
- Around 4 m/s most triplets inside the cone
- At very low winds, opposite effect
ERS-2

- Warm steady-flow air discerned from polar gusty air.
- Wind variability causes triplet inconsistency
- Noise at edge of the swath; ASCAT moved outward
Geophysical noise

- Different kinds of FOVs are combined (views)
- Each WVC view represents a different areal mean
- The ocean surface is variable
- A geophysical error occurs due to ocean surface variability and WVC non-uniform sampling

Portabella & Stoffelen, 2006
Accuray on 50-km WVC scale

- Triple collocation analysis of buoy, scatterometer & NWP

<table>
<thead>
<tr>
<th>Vector RMS error [m/s]</th>
<th>Tropical TAO/PIRATA</th>
<th>Extratropical NDBC/MEDS/UKMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buoy</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Scatterometer</td>
<td>1.2</td>
<td>1.6</td>
</tr>
<tr>
<td>ECMWF model</td>
<td>2.0</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Scatterometer winds provide excellent forcing
Remaining errors include representativeness
ASCAT contains small scales down to 25 km

Improved w.r.t. SeaWinds

No noise floor

$k^{-1.9}$
Mesoscales

- 12.5-km box details appear spectrally correct
- It verifies well with buoys
- It corresponds well with cloud features

www.knmi.nl/scatterometer
High Winds
C-band Model Function

- C-band HH sensitive to high winds
- No EUM priority due to lack of high winds

Courtesy
D. Esteban
JPL, NASA
ASCAT L1 backscatter averaging

- Wind Vector Cell
- Hamming filter
- Averaging window

ASCAT Level 2 product:
- 50 km resolution
- up to 60 km off the coast to avoid land effects

ASCAT Coastal product:
- 30-40 km resolution
- up to 25 km off the coast
- σ^o more noisy

IOVWST, May 2010
ASCAT L1 backscatter averaging

Wind Vector Cell

Hamming filter averaging window

ASCAT Level 2 product:
- 50 km resolution
- up to 60 km off the coast to avoid land effects

ASCAT Coastal product:
- 30-40 km resolution
- up to 25 km off the coast
- \(\sigma \) more noisy

IOVWST, May 2010
Prototype at 25 km
Box AWDP@12.5

- Box averaging maintains more tail variance
- No apparent noise floor
- Buoy verification confirms this; see later presentation
- Still u bump, but at lower wavelength (?)
- $k^{-1.8}$, pretty close to -1.67 for 3D turbulence

NWP SAF

IOVWST, May 2010

Nastrom and Gage 1987
- 28 minutes clearly optimal
- No gain in tropics at 50 minutes
Antenna assembly

C-band, VV polarization (extension to dual HH polarization an option)

Swath FoV \(\rightarrow\) 3dB width
Spatial resolution \(\rightarrow\) 3dB length

[20% better than ASCAT on MetOp (from 20 to 16 km)]

Beam shaping in elevation

Dynamic range

\[
SNR = \frac{\lambda^2}{(4\pi)^3} \left(\frac{G_{TX} G_{RX}}{R^4 \cdot L_{prop}} \right) \left(\frac{T_0 + T_{eq}}{k_B B_{look}} \right) \sigma^0 A_{look}
\]

[SNR is determined by Pt and chirp bandwidth]

IOVWST, May 2010
Radar PRF

Limited by swath extent: two different strategies

A) Long pulse ($T_{TX} >> t_{SWATH}$)

PRF = $1/(T_{HOR}+T_{TX}+T_{N}) = 29.4$ Hz (30%DC)

B) Short pulse ($T_{TX} << t_{SWATH}$)

PRF = $1/(T_{FAR}+T_{TX}) = 230$ Hz (7%DC)

IOVWST, May 2010
2) Radar waveform

LFM chirp for range resolution

Chirp $\sim \exp[i(\mu/2)t^2]$

Deramping $\sim \exp[-i(\mu/2)t^2] \exp[i f_D t + i(\mu/2)(t-t_r)^2] = \exp[i(f_D + i\mu t_r)t]$

Echo bandwidth $B_{\text{echo}} \approx \mu (t_{\text{FAR}} - t_{\text{NEAR}}) + \Delta f_D$

Detection bandwidth $B_{\text{detection}} \approx 1/T_{RX} = B_{\text{look}}$

Resolved look area:

$$A_{\text{look}} = 16 \text{ km} \times \frac{B_{\text{look}}}{2(\mu/c)\sin(\text{inc})}$$

Inversely proportional to chirp rate, but so is SNR!

In dB:

$$dB_{\text{echo}}/dx \approx 2(\mu/c)\sin(\text{inc})$$

OlVWST, May 2010
Radiometric resolution

Received signal = backscatter + speckle + emission

\[K_p^2 = \frac{\text{var}\{\sigma^0\}}{\langle \sigma^0 \rangle^2} = \frac{1}{N_{\text{looks}}} \left(1 + \frac{1}{SNR} \right)^2 + \frac{1}{N_{\text{noise}}} \left(\frac{1}{SNR} \right)^2 \]

1) Accumulate independent looks to reduce speckle

\[N_{\text{looks}} = N_{az} N_{el} \]

\[N_{az} = \left(\frac{\text{PRF}}{v_{\text{ground}}} \right) L_{WVC} \]
Maximum PRF
(compatible with unambiguous range)

\[N_{el} = \left[2(\mu/c)\sin(\text{inc})/B_{\text{look}} \right] L_{WVC} \]
Maximum \(\mu \)
(compatible with SNR >-1.5dB)

\[\text{SNR} \propto P_t \sigma^0/\mu \sin(\text{inc}) \]
Minimum Pt
(compatible with Kp requirements)

2) Noise (emission) estimation and subtraction

\[N_{\text{noise}} = N_{az}B_{\text{echo}} T_N \]

Where \(B_{\text{echo}} = f_s/2 \) sets the sampling frequency

IOVWST, May 2010
Trade-offs to optimize Kp via chirp rate and total power (antenna pattern)

Min SNR check

Max Kp check

Non-compliance leads to increments in peak power
(and/or antenna pattern accommodation?)

Non-compliance leads to increments in chirp rate

Compliant SCA configurations enter the wind performance study

IOVWST, May 2010
Complete SCA configuration

1) Antenna assembly
- total power & pattern

2) Radar waveform
- PRF, chirp rate & noise

Orbital model

Pseudo Level 1B file

NESZ (Noise Equivalent Sigma Zero):

\[
NESZ = \frac{\sigma^0}{SNR} = \frac{k_g(T_0 + T_{eq})}{\lambda^2} \left(\frac{PG_{tx} \cdot G_{rx}}{R^4 \cdot L_{prop}} \right) \frac{B_{look}}{A_{look}}
\]

<table>
<thead>
<tr>
<th>Row/Col</th>
<th>Lat/Lon</th>
<th>Satellite position and velocity</th>
<th># Views</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1.53</td>
<td>0.000 0.000 0.000 6.90 6.90</td>
<td>VV</td>
<td>3</td>
</tr>
<tr>
<td>0 0.00 a 135.00 28.51 3046.00</td>
<td>6.90</td>
<td>VV</td>
<td></td>
</tr>
<tr>
<td>1 0.00 a 90.00 20.40 2514.00</td>
<td>23.71</td>
<td>VV</td>
<td></td>
</tr>
<tr>
<td>2 0.00 a 45.00 28.51 3046.00</td>
<td>6.90</td>
<td>VV</td>
<td></td>
</tr>
<tr>
<td>0 1 7.58 4.28 0.000 0.000 0.000 0.000 0.000</td>
<td>6.90</td>
<td>VV</td>
<td></td>
</tr>
<tr>
<td>0 0.00 a 135.00 28.51 3046.00</td>
<td>6.90</td>
<td>VV</td>
<td></td>
</tr>
<tr>
<td>1 0.00 a 90.00 21.29 2632.00</td>
<td>23.23</td>
<td>VV</td>
<td></td>
</tr>
<tr>
<td>2 0.00 a 45.00 28.51 3046.00</td>
<td>6.90</td>
<td>VV</td>
<td></td>
</tr>
<tr>
<td>0 2 8.03 3.31 0.000 0.000 0.000 0.000</td>
<td>6.90</td>
<td>VV</td>
<td></td>
</tr>
<tr>
<td>0 0.00 a 135.00 29.69 3194.00</td>
<td>7.31</td>
<td>VV</td>
<td></td>
</tr>
<tr>
<td>1 0.00 a 90.00 22.16 2750.00</td>
<td>22.79</td>
<td>VV</td>
<td></td>
</tr>
<tr>
<td>2 0.00 a 45.00 29.69 3194.00</td>
<td>7.31</td>
<td>VV</td>
<td></td>
</tr>
<tr>
<td>0 3 8.47 2.34 0.000 0.000 0.000 0.000</td>
<td>7.75</td>
<td>VV</td>
<td></td>
</tr>
<tr>
<td>0 0.00 a 135.00 30.85 3341.00</td>
<td>7.75</td>
<td>VV</td>
<td></td>
</tr>
<tr>
<td>1 0.00 a 90.00 23.03 2867.00</td>
<td>22.39</td>
<td>VV</td>
<td></td>
</tr>
<tr>
<td>2 0.00 a 45.00 30.85 3341.00</td>
<td>7.75</td>
<td>VV</td>
<td></td>
</tr>
</tbody>
</table>

Azimuth Incidence # Looks 1/NESZ Polarization

WVC Node

Views

IOVWST, May 2010