Status of GCOM-W1 and GCOM-W2

OVWST Barcelona, Spain May18,2010 Haruhisa Shimoda, Keiji Imaoka, Norimasa Ito, Keizo Nakagawa EORC, JAXA

CONTENTS

- What is GCOM mission
- AMSR-E status
- GCOM-W1 satellite
- GCOM-W1 calibration
- AMSR-E reprocessing
- International cooperation
- GCOM-W2
- Conclusions

GCOM Mission

- Continuation of ADEOS ${\rm I\hspace{-0.5mm}I}$
- Contribution to GEOSS
- Climate, Weather, Water, Ecosystem, Agriculture, etc. in GEOSS 9 areas
- Focus on Climate change / Global warming and Water cycle committed in Summit
- Contribution to operational fields like weather forecast, fisheries, etc.
- Long term continuous measurements

Scientific Targets

- Accurate estimation of aerosol radiative forcing
- Validation of climate models
- Accurate estimation of primary production
- Better understanding of coastal phenomena
- Better understanding of sea ice trend

Operational Applications

- Input to NWP
- Extreme weather forecasting
- Fisheries
- Navigation
- Coastal management
- Crop yield estimation
- Monitoring forest decrease
- Monitoring volcano eruptions
- Monitoring forest fire

AMSR-E Status

Status of Aqua/AMSR-E

- Mission status
 - Nearly 8-years observation after the launch on May 4, 2002 onboard NASA's EOS Aqua satellite.
 - Stable brightness temperature records, except the loss of 89GHz-A data from November 2004.
 - Motor torque increase and ADE fail-over to redundant system.
- Instrument characteristics
 - Multi-frequency and dual polarization radiometer developed by JAXA.
 - Main reflector with diameter of 1.6m.
 - 6.9GHz channels for SST and soil moisture retrievals.
 - Afternoon (1:30 pm) equatorial crossing time that is currently unique for microwave radiometers.

Pre-launch AMSR-E in Tsukuba Space Center

Radiometric Correction: Two Steps

Step 1 : PRT method

- Multiple regression model of T_{eff} using eight PRT readings.
- Coefficients of the regression model were determined by using SSM/I oceanic Tb (18GHz and higher channels) and computed Tb (6 and 10GHz channels) based on the Reynolds OI-SST analysis.

HTS Effective Temp.

PRT readings

SSM/I data were provided by the Global Hydrology Resource Center (GHRC) at the Global Hydrology and Climate Center, Huntsville, Alabama, USA. Reynolds OI-SST dataset were made available by NOAA.

Step 2 : RxT method

- Utilize Relationship between receiver temperature and its gain variation.
- Applying this equation to HTS measurement and assuming T_{eff} derived by regression model as T_{OBS} , b_{RX} can be computed by regression analysis. Using this value, gain variations can be compensated by the equation.

$$T_{OBS} = \frac{C'_{OBS} - C'_{CSM}}{G_0 \cdot \left(1 + b_{RX} \cdot \Delta T_{RX}\right)} + T_{CSM}$$

T _{OBS}	: Scene Tb (K)
T_{CSM}	: Deep space Tb (K)
C'_{OBS}	: Digital counts of scene
C'_{CSM}	: Digital counts of deep spece
G_0	: Nominal gain
b_{RX}	: Gain sensitivity to rec. temp. ($^{\circ}C^{-1}$)
ΔT_{RX}	: Rec. temp. departure from mean value ($^{\circ}$ C).

Radiometric Correction : Results

GCOM satellites

- GCOM-W1
 - AMSR2 (Advanced Microwave Scanning Radiometer 2)
 - Planned to be launched on Nov., 2011
- GCOM-C1
 - SGLI (Second generation Global Imager)
 - Planned to be launched in fiscal 2013
- Plan for the 2nd and 3rd generations
 - GCOM-W2 (in 2015),
 GCOM-W3 (in 2019)
 - GCOM-C1 (in 2017),
 GCOM-C3 (in 2021)

GCOM-W1

- Orbit : A-train
 - Sun synchronous orbit
 - Height: about 700km
 - Local time of ascending node: 13:30
- Weight: about 1.99t
- Power : about 3.9kW
- Lifetime: 5 years
- Data transmission
 - Global observation data are stored and transmitted every orbit period
 - Observed data are transmitted to ground stations in real time

A-Train and GCOM-W1

- After invitation to A-Train constellation from NASA, JAXA and A-Train members studied the possibility of participation of GCOM-W1 to A-Train.
- Participation of GCOM-W1 to A-Train was approved by A-Train members last October. The position of GCOM-W1 is ahead of Aqua.
- Benefits of joining the A-train are:
 - Precise inter-calibration between AMSR-E and AMSR2; and
 - Synergy with A-Train instruments for new Earth science research.

Downlink

- Freq : 8245MHz
- Polarization : RHCP
- Modulation : OQPSK
- Data Rate : 10Mbps (20Msps)
- Coding : CCSDS, Reed-Solomon, convolution

CCON1_\/1 catellite

GCOM-W (Water)

Instrument	Advanced Microwave Scanning Radiometer-2
Orbit	Sun Synchronous orbit Altitude:699.6km (over the equator)
Size	5.1m (X) * 17.5m (Y) * 3.4m (Z)
Mass	1880kg
Power	Over 4050W
Launch	JFY2011 (CY2012 Winter)
Design Life	5-years
Status	Preliminary Design started in JFY2007

- GCOM-W1/AMSR2 will contribute to long-term observation of global water and energy cycle.
- Continue AMSR-E observation (high spatial resolution, low-frequency channels, etc.).
- Construct reliable long-term dataset to contribute for understanding and monitoring of climate change.
- Contribute to operational use by providing continuous cloud-through SST, frequent and quantitative storm observation to maintain precipitation forecast accuracy.

Basic requirements for AMSR 2

- Minimum modifications from AMSR on ADEOS-II to reduce risks/cost and keep the earliest launch date.
- Several essential improvements.
 - Improvement of calibration system including warm load calibration target.
 - Consideration to C-band radio frequency interference (RFI).
- Combination with SeaWinds-type scatterometer is highly desired.

Basic requirements for AMSR 2

- Antenna : 2.0m, offset parabolic antenna
- Channel sets
 - Identical to AMSR-E (no O₂ band channels)
 - 6.925,7.3, 10.65, 18.7, 23.8, 36.5, 89.0GHz
 - Dual polarization
- Calibration
 - Improvements of hot load etc.
 - Enhance pre-launch calibration testing
- Orbit
 - A-Train
- Mission life
 - 5 years

Improvement of HTS(Hot Load)

AMSR2

Sensor Unit (SU)

CSM: Cold Sky Mirror, HTS: High Temperature noise Source, TCP: Thermal Control Panel

HTS and CSM Proto Flight Model under vibration test(Dec. 2009)

Improvement of HTS(Hot Load)

- (1) Temperature inside HTS is kept constant (= 20 degrees C) using heaters on 5 walls of HTS and TCP.
- (2) Sunshields attached to HTS and TCP minimize the sun light reflection into HTS.
- (3) TCP thermally isolates HTS from SU structure (much colder than HTS).

- Maximum temperature difference inside HTS : less than 2K
 - **Estimated brightness temperature accuracy :**
 - 0.2 K (Variable bias during orbit, season, design life)
 - 0.1 K (Random due to quantization)

Hot Load performance

- The largest temperature difference within hot load is less than 2K.
- The estimated absolute accuracy of brightness temperature is less than 0.2K with the aid of improved temperature sensor.

Temperature Resolution

Frequency	Resolution(target)
6.925	<0.34(0.3)
7.3	<0.43
10.65	< 0.7(0.6)
18.7	< 0.7(0.6)
23.8	< 0.6(0.55)
36.5	< 0.7(0.65)
89.0	< 1.2(1.1)

Overview of AMSR2 Deployable main reflector system with 2.0m diameter.

Deployed

• Frequency channel set is identical to that of AMSR-E

- except 7.3GHz channel for RFI mitigation.
- Two-point external calibration with the improved HTS (hotload).

• Deep-space maneuver will be considered to check the consistency between main

GCOM-W1/AMSR2 characteristics		AMSR2 Channel Set					
Orbit	Sun Synchronous with 699.6km altitude (over the equator)	Cente r Freq. [GHz]	Band width [MHz]	Polari zatio n	Beam width [deg] (Ground res. [km])	Samplin g interval [km]	
Launch	JFY2011	6.925			1.8 (35 x 62)		
Design-Life	5-years			350		1.7 (34 x 58)	
Local time	13:30 LTAN	10.65	100	V	1 2 (24 x 42)		
Swath width	1450km	18.7	200	and	0.65 (14 x 22)	10	
Antenna	2.0m offset parabola	23.8	400	н	0.75 (15 x 26)		
Incidence	Nominal 55 degree	36.5	1000		0.35 (7 x 12)		
angie	5	89.0	3000		0.15 (3 x 5)	5	

Stowed

products	IFOV	std. accr.	dynamic range
brightness temp.	5-50km	±1.5K	2.7-340K
total prec. water	15km	±3.5kg/m ³	0-70kg/m ³
cloud liq. water	15km	±0.05kg/m ²	0-1.0kg/m ²
precipitation	15km	Ocean: 50% Land:±120%	0-20mm/h
SST	50km	±5 °C	-2-35°C
sea surf. winds	15km	±1m/s	0-30m/s
sea ice conc.	15km	±10%	0-100%
snow depth	30km	±20cm	0-100cm
soil moisture	50km	±10%	0-40%

Characterization and Calibration

- Pre-Launch
 - Measurements of radiometer noise, antenna pattern (main reflector and CSM), detector non-linearity, sensor alignment, etc.
- Post-Launch
 - Deep space calibration is scheduled just one time during the initial checkout phase to assess MREF-CSM consistency, cold scan bias, and so forth. It will be implemented by single orbit inertia-lock maneuver over open ocean areas.
 - Cross calibration with other radiometers and characterization such as scan biases.
 - Monitoring of radiometer sensitivity, radiometer gain stability, brightness temperatures at selected stable regions, etc.
 - Geometric calibration and determination of sensor alignment offsets.

Cross Calibration with AMSR-E

- AMSR-E and AMSR2 will remain in A-train at least 1 year.
- Cross calibration will be conducted during this 1 year period.
- New calibration parameters of AMSR-E will be determined.
- The whole AMSR-E products will be reprocessed using this new parameters.

International Cooperation

- Discussions on the cooperation with NPOESS is underway with NOAA
- AMSR2 is a part of GPM
- JAXA is proposing a joint science activity with NASA
- Provision of a scatterometer on GCOM-W2 is under discussion with JPL and NOAA

New Scatterometer on GCOM-W2

- Dual Frequency Scatterometer (DFS)
- Ku band and C band
- around 2m aperture
- All weather monitoring
- All wind speed monitoring

AMSR3 on GCOM-W2

- Addition of scatterometer
- Addition of high frequency channels (150-190GHz) for solid precipitation and water vapor sounding
- Also, join the A-train at least 1 year

GCOM-W2 Overview

GCOM-W2 Overview

Mission instruments	 Advanced Microwave Scanning Radiometer 3(AMSR3) Dual Frequency Scatterometer (DFS)
Observation orbit	Sun Synchronous Orbit (A-train orbit) Altitude 699.6km, Inclination 98.186deg
Local sun time	13:30 (ascending)
Dimensions	5.6m(X), 17.6m(Y), 5.2m(Z)
Spacecraft mass	2515kg (BOL)
Generation power	4050W (EOL, two wings)
Launch year and launcher	January 2016 / H-IIA
Design lifetime	Five years

GCOM-W2 Configuration

Conclusions

- AMSR2 will have the highest calibration capability within microwave imager.
- AMSR-E products will be reprocessed after the cross calibration with AMSR2.
- Long term high accuracy microwave imager products will be obtained.