CROSS-VALIDATION OF SCATTEROMETER WINDS
VIA SEA-LEVEL PRESSURE RETRIEVAL

Jérôme Patoux
Ralph C. Foster
Robert A. Brown

May 19, 2010
The models are WRONG!
Except one...
The solution for the PBL boundary layer (Brown, 1974, Brown and Liu, 1982), may be written

\[
\frac{U}{V_G} = e^{i\alpha} - e^{-z} \left[e^{-iz} + ie^{iz} \right] \sin \alpha + U_2
\]

where \(V_G \) is the geostrophic wind vector, the angle between \(U_{10} \) and \(V_G \) is \(\alpha \)\[\alpha[u^*, \nabla_H T, (T_a - T_s)_{PBL}] \] and the effect of the organized large eddies (OLE) in the PBL is represented by \(U_2(u^*, T_a - T_s, \nabla_H T) \)

This may be written:

\[
\frac{U}{V_G} = f\{\alpha(u^*), U_2(u^*), u^*, z_0(u^*), \nabla_T(\nabla_H T), \Psi(T_a - T_s), \lambda\}
\]

Or \(\frac{U}{V_G} = f[u^*, \nabla_T(\nabla_H T), \Psi(T_a - T_s), \lambda, k, a] = f \{u^*, \nabla_H T, T_a - T_s\}, \) for \(\lambda = 0.15, k = 0.4 \) and \(a = 1 \)

In particular,

\[
V_G = f (u^*, \nabla_H T, T_a - T_s) \equiv f_n(\nabla P, \rho, f)
\]

Hence \(\nabla P = f_n [u^*(k, a, \lambda), \nabla_H T, T_a - T_s, \rho, f] \approx f_n(\sigma_0) \)
PBL model

U_{10}

V_{Gr}

∇p

swath of pressure gradients

fit a surface pressure field

Patoux (2010)
The scatterometer-derived SLP fields compare well with NCEP and ECMWF SLP analyses.

Patoux (2010)
Applications: Identification and diagnosis of frontal wave development.

Applications: Midlatitude cyclone intensification, tracking, and climatology of air-sea fluxes.

Applications: NRTQS-derived SLP fields at the Ocean Prediction Center.

(In coll. with Joe Sienkiewicz.)
Applications: Synergy between scatterometry and altimetry in midlatitude cyclone studies.

What next?

- Is the SLP retrieval methodology applicable to other scatterometers?
- How will the SLP fields derived from different instruments compare with each other?
- Can we consider a long-term multi-instrument climatology of global SLP fields?
- Could such a SLP climatology guide our construction of a wind climatology?

Patoux (2010)
Comparison of QS- and ASCAT-derived SLP fields

Patoux (2010)
Comparison of buoy (bulk) pressure gradients with QS-derived (bulk) pressure gradients

![Comparison of buoy (bulk) pressure gradients with QS-derived (bulk) pressure gradients](image)
Repeat for all possible pairs of buoys...
Good agreement with buoys:

\[R^2 = 0.927 \]
\[\text{Slope} = 0.988 \]

Rms differences with ECMWF:

1.2-1.5 hPa across the swath.
Rms differences with ECMWF:

~1-2 hPa, depending on latitude and season.
Spectral analysis:

Slope = -4.3
(consistent with wind spectral slope of ~2.2-2.4)

More energy in QS spectra at all scales below ~1000 km.
(ECMWF slope = -4.4)
Compare ASCAT with QS:

QuickSCAT: $R^2 = 0.927$
Slope = 0.988

ASCAT: $R^2 = 0.891$
Slope = 0.908

Patoux (2010)
The rms differences between ASCAT and ECMWF are \textbf{0.2-0.3 hPa} larger than the rms differences between QS and ECMWF.
The rms differences with ECMWF agree within \(~0.1\) hPa and the seasonal variations agree well with each other.
Spectral analysis:

Identical slopes (-4.3)
Slightly less energy in ASCAT spectra, as compared to QS.

Patoux (2010)
Derive a new set of winds from the SLP field (Patoux 2010)
Comparison of QS winds with buoy measurements:

Patoux (2010)
Comparison of QS and ASCAT winds with buoy measurements:
Comparison of QS and ASCAT wind components with buoy measurements:

<table>
<thead>
<tr>
<th></th>
<th>QuikSCAT</th>
<th>DIRTH</th>
<th>QS/SLP_u10</th>
<th>ASCAT</th>
<th>AS/SLP_u10</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>R^2</td>
<td>0.89</td>
<td>0.91</td>
<td>0.94</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.93</td>
<td>0.90</td>
<td>0.93</td>
<td>0.91</td>
</tr>
<tr>
<td>v</td>
<td>R^2</td>
<td>0.85</td>
<td>0.86</td>
<td>0.91</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.90</td>
<td>0.89</td>
<td>0.93</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Patoux (2010)
Spectral analysis:

The average AS Wind spectrum has the same slope (-2.4) as the SLP-filtered QS winds, and both have a power law behavior down to 50 km.
Conclusions

QS- and ASCAT-derived SLP fields are very similar in a statistical sense (and the agreement could presumably increase with higher ASCAT wind speeds).

The SLP fields can be used as a metric to compare the performance of different scatterometers.

They can also be used to:
• Filter the scatterometer winds
• Guide the ambiguity selection (?)
• Align different scatterometer wind products with each other by filtering each wind data set appropriately to meet specified requirements.

N.B.: QuikSCAT, SeaWinds, and ASCAT SLP fields are archived at: http://pbl.atmos.washington.edu