CROSS-VALIDATION OF SCATTEROMETER WINDS VIA SEA-LEVEL PRESSURE RETRIEVAL

Jérôme Patoux Ralph C. Foster Robert A. Brown

May 19, 2010

The solution for the PBL boundary layer (Brown, 1974, Brown and
Liu, 1982), may be written

$$\mathbf{U}/\mathbf{V}_{\mathbf{G}} = \mathbf{e}^{\mathbf{i}\alpha} - \mathbf{e}^{-\mathbf{z}}[\mathbf{e}^{-\mathbf{i}\mathbf{z}} + \mathbf{i}\mathbf{e}^{\mathbf{i}\mathbf{z}}]\mathbf{sin} \alpha + \mathbf{U}_{\mathbf{2}}$$

where $\mathbf{V}_{\mathbf{G}}$ is the geostrophic wind vector, the angle between \mathbf{U}_{10} and
 $\mathbf{V}_{\mathbf{G}}$ is $\alpha[\mathbf{u}^*, \nabla_{\mathbf{H}}\mathbf{T}, (\mathbf{T}_{a} - \mathbf{T}_{s})_{\text{PBL}}]$ and the effect of the organized large
eddies (OLE) in the PBL is represented by $\mathbf{U}_{2}(\mathbf{u}^*, \mathbf{T}_{a} - \mathbf{T}_{s}, \nabla_{\mathbf{H}}\mathbf{T})$
This may be written:
 $\mathbf{U}/\mathbf{V}_{\mathbf{G}} = f\{\alpha(\mathbf{u}^*), \mathbf{U}_{2}(\mathbf{u}^*), \mathbf{u}^*, \mathbf{z}_{0}(\mathbf{u}^*), \mathbf{V}_{\mathbf{T}}(\nabla_{\mathbf{H}}\mathbf{T}), \Psi(\mathbf{T}_{a} - \mathbf{T}_{s}), \lambda\}$
Or $\mathbf{U}/\mathbf{V}_{\mathbf{G}} - f[\mathbf{u}^*, \mathbf{V}_{\mathbf{T}}(\nabla_{\mathbf{H}}\mathbf{T}), \Psi(\mathbf{T}_{a} - \mathbf{T}_{s}), \lambda, \mathbf{k}, \alpha] - f\{\mathbf{u}^*, \nabla_{\mathbf{H}}\mathbf{T}, \mathbf{T}_{a} - \mathbf{T}_{s}\},$
for $\lambda = 0.15$, $\mathbf{k} = 0.4$ and $\alpha = 1$
In particular,
 $\mathbf{V}_{\mathbf{G}} = f(\mathbf{u}^*, \nabla_{\mathbf{H}}\mathbf{T}, \mathbf{T}_{a} - \mathbf{T}_{s}) \equiv f_{\mathbf{n}}(\nabla \mathbf{P}, \mathbf{\rho}, \mathbf{f})$

Hence $\nabla \mathbf{P} = f_n [\mathbf{u}^*(\mathbf{k}, \mathbf{a}, \lambda), \nabla_H T, T_a - T_{s, \rho}, f] \approx \mathbf{f}_n(\sigma_0)$

The scatterometer-derived SLP fields compare well with NCEP and ECMWF SLP analyses.

Surface pressure from SeaWinds and NCEP - 12May03 - 19:56 UTC

Applications: Identification and diagnosis of frontal wave development.

Patoux, J., G.J. Hakim and R.A. Brown, 2005: **Diagnosis of frontal instabilities over the Southern Ocean**, *Mon. Wea. Rev.*, 133, 863-875.

Applications: Midlatitude cyclone intensification, tracking, and climatology of air-sea fluxes.

Patoux J., X. Yuan and C. Li, 2009: Satellite-based midlatitude cyclone statistics over the Southern Ocean. Part I: Scatterometer-derived pressure fields and storm tracking, *J. of Geophys. Res.*, D04105, doi:10.1029/2008JD010873.

Yuan X., J. Patoux and C. Li, 2009: **Satellite-based midlatitude cyclone statistics over the Southern Ocean. Part II: Tracks and surface fluxes**, *J. of Geophys. Res.*, D04106, doi:10.1029/2008JD010874.

Applications: NRT QS-derived SLP fields at the Ocean Prediction Center.

(In coll. with Joe Sienkiewicz.)

Applications: Synergy between scatterometry and altimetry in midlatitude cyclone studies.

19 Apr 2005 – 22:08 UTC 60'W 30'W 60'N 40'N 20'N Jason track 22:04 UTC ECMWF slp 00:00 UTC Pressure (hPa) 952 976 988 1000 1012 1024 1036 964

Carrère, L., F. Mertz, J. Dorandeu, Y. Quilfen and J. Patoux, 2009: **Observing and studying extreme low pressure events with altimetry**, in *Sensors*, Special Issue "Ocean Remote Sensing", 9(3), 1306-1329, doi:10.3390/s90301306.

What next?

- Is the SLP retrieval methodology applicable to other scatterometers?
- How will the SLP fields derived from different instruments compare with each other?
- Can we consider a long-term multi-instrument climatology of global SLP fields?
- Could such a SLP climatology guide our construction of a *wind* climatology?

Comparison of QS- and ASCAT-derived SLP fields

Patoux (2010)

Comparison of buoy (bulk) pressure gradients with QS-derived (bulk) pressure gradients

Repeat for all possible pairs of buoys...

Good agreement with buoys:

R² = 0.927 Slope = 0.988

Patoux, J., R.C. Foster and R.A. Brown, 2007: **An Evaluation of Scatterometerderived Oceanic Surface Pressure Fields**, *J. Appl. Meteor.*, 47, 835-852.

Rms differences with ECMWF:

1.2-1.5 hPa across the swath.

Rms differences with ECMWF:

~1-2 hPa, depending on latitude and season.

Spectral analysis:

Slope = -4.3 (consistent with wind spectral slope of ~-2.2-2.4)

More energy in QS spectra at all scales below ~1000 km. (ECMWF slope = -4.4)

Compare ASCAT with QS:

The rms differences between ASCAT and ECMWF are **0.2-0.3 hPa** larger than the rms differences between QS and ECMWF.

The rms differences with ECMWF agree within ~0.1 hPa and the seasonal variations agree well with each other.

Spectral analysis:

Identical slopes (-4.3) Slightly less energy in ASCAT spectra, as compared to QS.

Comparison of QS and ASCAT wind components with buoy measurements:

		QuikSCAT	DIRTH	QS/SLP_u10	ASCAT	AS/SLP_u10
u	R ²	0.89	0.92	0.91	0.94	0.93
	Slope	0.93	0.95	0.90	0.93	0.91
v	R ²	0.85	0.87	0.86	0.91	0.90
	Slope	0.90	0.92	0.89	0.93	0.91

Spectral analysis:

The average AS Wind spectrum has the same slope (-2.4) as the SLPfiltered QS winds, and both have a power lay behavior down to 50 km.

Conclusions

QS- and ASCAT-derived SLP fields are very similar in a statistical sense (and the agreement could presumably increase with higher ASCAT wind speeds).

The SLP fields can be used as a metric to compare the performance of different scatterometers.

They can also be used to:

- Filter the scatterometer winds
- Guide the ambiguity selection (?)
- Align different scatterometer wind products with each other by filtering each wind data set appropriately to meet specified requirements.

N.B.: QuikSCAT, SeaWinds, and ASCAT SLP fields are archived at: http://pbl.atmos.washington.edu