Are Radiometers and Scatterometers Seeing the Same "Wind Speed" ?

> Frank J. Wentz and Thomas Meissner Remote Sensing Systems

NASA Ocean Vector Wind Science Team Meeting May 18-20, 2009 Boulder, CO

Radiometer and Scatterometers See Different Scales of Sea-Surface Roughness

Scatterometers see backscatter from the Bragg-resonance capillary wave. Backscatter is proportional to amplitude of Bragg capillary wave

$$\lambda_{capillary} = \frac{\lambda_{radar}}{2\sin\theta} \approx 1.5 \ cm$$

Radiometers see polarization mixing of tilted gravity waves Specular surface is highly polarized: Roughness reduces polarization Ocean waves from 1000 cm to 0.1 cm contribute to rms slope.

Making Radiometer Winds Look Like Scatterometer Winds (and Buoys)

In 2002, adjustments were made to the Radiative Transfer Model to bring agreement to the SSM/I and QuikScat wind retrievals.

Adjustments were:

1. Wind-Induced emissivity a function of SST

2. Ad Hoc adjustment to specular emissivity.

Good agreement was obtain, BUT WHY were these adjustments needed?

Satellite MW Sensor Inter-Calibration Project: Consistency

A New RTM is Emerging

Clearer and More Consistent Picture of the Physics of Radiative Transfer over the 6 to 90 GHz Microwave Spectrum

- > WindSat is providing better sensor calibration at the lower frequencies (for the first time)
- > SSM/I continues to demonstrate its classic calibration at the higher frequencies
- > Advancements in data management and analysis visualization

RTM Needs to be Updated

- >Analysis provides adjustments to atmospheric absorption models and dielectric constant
- >Adjustments are well within experimental error of the original laboratory data.
- WindSat and SSMI give essentially the same results for overlapping frequencies (19-37 GHz).

When QuikScat winds are inputted into new RTM, the simulated and measured brightness temperatures are in good agreement over SST, wind, vapor space.

Conclusion

 $S(k_{bragg})$ and $\int_{0.001}^{10} dk k^3 S(k)$ are highly correlated in {T,W,V} space

For the most part, radiometers and scatterometers see the same wind.

There are probably some specific processes, which are geographical unique, that do not reveal themselves in {T,W,V} space, like:

- Arabian Monsoons
- Upwelling areas

Radiometer wind retrievals using new RTM will reveal these processes

Need to Separate High-Wind Effect from Rain Effects

HRD \rightarrow WindSat \rightarrow QuikScat

- WindSat can easily detect rain
- 7 GHz H-pol channel increases linearly with wind at high winds (SFMR)

Thomas Meissner Investigation

- Wind vectors from Surface Wind Analysis from the NOAA's Hurricane Research Division (HRD)
- Collocated with WindSat brightness temperatures
 - NRL Level0 data processed by RSS into Level2
 - Calibrated
 - Optimum interpolated onto 1/8 deg fixed Earth grid (X-band resolution)
- 17 storms during 2003 and 2004
- Rain flagged (TB exceeds boundary for rain free ocean scenes)
- 3 hour time window
- Scale HRD winds (1 minute sustained) by 0.88 to compare with satellite winds (10 minute sustained)

www.remss.com

- Resample HRD winds (5 km) onto WindSat footprint (30 km for X-band)
- Visual shift of HRD field so that storm center coincides with WindSat
- Half of the set is used for training, the other half for testing
- About 24,000 wind vector cells for test set

