

Scatterometer Wind Services in Europe

NWP SAF

Ad Stoffelen
Maria Belmonte
Marcos Portabella (CSIC)
Anton Verhoef
Jeroen Verspeek
Jur Vogelzang
Abderrahim Bentamy (IFREMER)

scat@knmi.nl

OVWST, 18-20/5/'09

Status SAF activities

NWP SAF

Available NWP SAF software

- AWDP1.0 released (ERS and ASCAT)
- SDP2.0 released (SeaWinds)
- 2D-Var settings and NWP guidance
- Coastal AWDP prototype (@25km, 12.5 km in 2009)
- OSI SAF winds and services
 - ASCAT Cal/Val
 - ASCAT 25 km since March 2007 (first L2); operational in Dec 2008
 - ASCAT 12.5 km operational
 - ASCAT are equivalent neutral winds now CMOD5.n (0.2 m/s)
 - Box averaged product / coastal product validation
 - Geophysical modeling (e.g., MLE and CMOD6)
 - SeaWinds stream updated for new BUFR (after updated NOAA stream)
 - NetCDF defined and available shortly
- EARS 30 minutes service
 - ERS data in ASCAT format
 - ASCAT 25 km & 12.5 km (ascending orbits)
- CM SAF ERS scatterometer ocean stress fields <u>climexp.knmi.nl</u>
- NWP and OSI SAF support European contribution ISCAT

MyOcean EU Marine Core Services Thematic Assembly Centers (TAC) L3 and L4 wind products

- TACs will feed the global and regional components of the MCS in observation products for space and in situ data. Wind products from Sea Ice and Wind TAC
- www.myocean.eu.org/, en.wikipedia.org/wiki/MyOcean
- **KNMI** manages wind products
- **V0** contains the L4 MERSEA project wind maps of IFREMER
- V1 (2010) contains L3 products and V2 (2012) improved L4

OSI SAF ASCAT product release schedule

Product	Coverage	Demonstration	Operational
OF Iron	Clobal	2007	2000
25 km	Global	2007	2008
12.5 km	Global	2008	2009
Coastal	Global	2009	2011
12.5 km			

- Integration of regional EARS products into global OSI SAF products in 2010
- EUMETSAT looks into box filtering of L1B data to support coastal

Monitoring of each product

NWP SAF

- 1st rank MLE
- Speed bias
- RMS u&v scat - EC
- Timeliness
- On-line, NRT

NWP SAF integrated monitoring at

www.metoffice.gov.uk /research/interproj /nwpsaf/scatter_report

ASCAT calibration

NWP SAF

Vertical cut for WVC #42

Level 1b 1st release

Level 1b current release

KNMI total correction

- > ASCAT L2 winds have been of constant high quality since Feb 2007
- > A backscatter calibration table is used, different for each L1B release
- ➤ A CMOD6 is being constructed following the L1B 3-transponder calibration

Unprecedented overall wind statistics after ocean σ⁰ correction

Both against buoys and NWP

N=3267229

 $cor_xy = 0.98$

mx = -0.15 my = -0.26

m(y-x) = -0.12 s(y-x) = 1.45

N=3267229

 $cor_xy = 0.95$

mx = 0.78 my = 0.73

m(y-x) = -0.05 s(y-x) = 1.62

Box versus Hamming

- Operational ASCAT σ^0 's include a spatial Hamming window filter; a box-filtered set has now also been provided by EUMETSAT
- Elaborated 2 tests for product comparison:
 - ➤ Dual product collocation with a representative set of buoy data (kindly provided by ECMWF), and NWP data
 - Spectral analysis (as in monday presentation)

Buoy verification

ASCAT 12.5-km product	# wind vectors	speed bias	stdev u	stdev v
Hamming filtered, operational	2025	-0.11	1.88	1.84
Box filtered, test set	2002	-0.11	1.89	1.91
Hamming, collocated with Box winds	1795	-0.09	1.92	1.87
Box filtered, Hamming collocated	1795	-0.09	1.91	1.88
Box, hi-res land/sea mask applied	2053	-0.11	1.88	1.92

- > QC and quality of Hamming and Box filtered sets appear slightly different
- > Collocated Hamming and Box WVCs have very similar buoy verification
- A more accurate land/sea mask provides here some more good-quality WVCs for Box averaging nearer to the coast

Conclusions

- ASCAT winds are stable and of very good quality
- Box-filtered ASCAT σ^0 data appear preferable over Hamming-filtered data
- ASCAT ERS continuity after ESA's ERS reprocessing
- L2 NetCDF winds being released; distribution foreseen through KNMI (NRT), EUMETSAT and PODAAC
- MyOcean Wind TAC; higher level wind products to spatially and temporally contain eddy-scale winds
- ISRO SCAT on OceanSat-2 at 12 LST nicely complements SeaWinds at 6 LST and ASCAT at 9:30 LST; KNMI will be involved in cal/val
- Plan work on SAR hi-res winds (sparse) using SAF scatterometer methodology
- We support visiting scientists that support us to develop our products to the standards of the international OVWS community; please contact us

NWP SAF

<u>www.knmi.nl/scatterometer</u> <u>scat@knmi.nl</u>

Bias due to σ^0 averaging

- 100-km product increases low speeds
- At coarser resolutions speeds should be lower instead?

Bias due to σ⁰ averaging

- σ^0 distribution is steep for low values; a low value at a 25-km WVC most likely has a neighbour WVC σ^0 value that is higher; this removes low (extreme) values when averaging to 100 km
- The wind vector distribution is flat for low values; a low 25-km WVC most likely has similarly low WVC neighbour amplitudes at varying direction; more low wind vector amplitudes are expected at 100 km
- ➤ 25-km GMF will not provide good 100-km winds!
- \triangleright We verified that noisier (>Kp) σ^0 data indeed provide speed bias as well

Buoy and NWP verification NWP SAF

- ASCAT 25 compares best to buoys;
 ASCAT 25 compares best to ECMWF as well
- SeaWinds 25 is slightly noisier than ASCAT 25;
 SeaWinds 100
 compares much better to ECMWF winds than SeaWinds 25
- ➤ Low-res products good for global NWP; Hi-res for ocean applications and nowcasting

ASCAT 25		SeaWinds 25		SeaWinds 100	
SD u [m/s]	SD v [m/s]	SD u [m/s]	SD v [m/s]	SD u [m/s]	SD v [m/s]
1.76	1.79	1.84	1.83	2.19	2.00

NWP SAF

Experimental 12.5-km product

See yesterday's talk

QuikSCAT vs ECMWF

ASCAT vs ECMWF

