The Usage of Scatterometer Data at ECMWF

Hans Hersbach, ECMWF

Overview

Assessment of the EARS ASCAT service

Re-calibration of ERS-1 and ERS-2

Usage/inter-comparison of scatterometer data

in the ECMWF interim reanalysis

Concluding remarks

Assessment of EARS ASCAT data

EUMETSAT Global ASCAT data service (GDS)

•Since February 2007,

timeliness of about 2 hours,

•used at ECMWF since 12 June 2007.

EUMETSAT Advanced Retransmission Service (EARS)

•Available in pilot phase since September 2008,

•Timeliness of 15 to 45 minutes.

Collocation study

≻Impact study

•Duplicate data to be automatically removed by generic thinning algorithm

Collocation between EARS and GDS ASCAT

OVWST meeting, Boulder (CA), 18-20 May 2009

EARS + GDS ASCAT Impact study Data count

Delayed cut off (12-hour window + 4h45m cut off)

(N_EARS - N_CONTROL)/(N_EARS + N_CONTROL) in Percent 2008091500 - 2008093018, All wind data (DCDA)

(N_EARS - N_CONTROL)/(N_EARS + N_CONTROL) in Percent 2008091500 - 2008093018, Active wind data (DCDA)

OVWST meeting, Boulder (CA), 18-20 May 2009

Early delivery (6-hour window + 1h cut off)

(N_EARS - N_CONTROL)/(N_EARS + N_CONTROL) in Percent 2008091500 - 2008093018, All wind data (DA)

(N_EARS - N_CONTROL)/(N_EARS + N_CONTROL) in Percent 2008091500 - 2008093018, Active wind data (DA)

ESA report, Abdalla and Hersbach 2007, www.ecmwf.int/publications

ERS-1&2 have known periods of σ_0 calibration.

Triple collocation:

✓ ERS, buoy, ERA-40 (all as non-neutral 10m wind)

- ✓18 Buoys: far enough from coast, stable, available for long period
- ✓ ERS based on CMOD5
- ✓ Stable periods: ERS1: 1993-1995 ERS2: 1998-2000

U.S. National Data Buoy Center (NDBC)							
41001	41002	41010	42001	42002	42003	44011	46002
46004	46005	46005	45035	51001	51003	51004	46059
Canadian Marine Environmental Data Service (CMEDS)							
46036	46184						

Table 1: Five-digit WMO identifiers of buoys that were taken in consideration for the collocation with ERS winds, grouped into originating data provider.

Figure 36: Number of collocations accumulated over the indicated period (and mapped on a N80 reduced Gaussian grid) for which buoy and ERS-1 (left) respectively ERS-2 (right) are positioned within 30 minutes and 50 km. Adjacent non-empty grid boxes expose buoy displacements.

OVWST meeting, Boulder (CA), 18-20 May 2009

F ECMWF 😂

➢ For ERS-2, CMOD5 ~ 0.5 m/s biased low → CMOD5.4
➢ Relative bias between ERS-1 and ERS-2
➢ @ buoy location, ERA-40 is biased low as:

$$s_{unbiased} = \begin{cases} s & s \le 3.5 \,\mathrm{m \, s^{-1}} \\ 1.08s - 0.28 \,\mathrm{m \, s^{-1}} & s > 3.5 \,\mathrm{m \, s^{-1}} \end{cases},$$

OVWST meeting, Boulder (CA), 18-20 May 2009

> Perform ocean calibration: ERS bias = σ_0 - CMOD5.4(ERA-40_{corrected})

Correct for this bias
Automatically identify specific periods

Correct for bias in σ₀, then apply CMOD5.4
 Re-make scatter plots

Residual small wind-speed and WVC dependent speed correction

ERA-Interim reanalysis at ECMWF

Operational Model Forecast Performance

ECMWF

Slide 9

-30-

Reanalyses Forecast Performance

Slide 10

ECMWF

-30-

The usage of Scatterometer data in the ECMWF interim reanalysis

Differences ERS/QSCAT: Sampling, QC, tuning Slightly increasing wind speed 1998?

Slide 11

ECMWF

Concluding remarks

Scatterometer data from ERS-2, QuikSCAT and ASCAT are routinely assimilated:

- ✓ Operational model
- ✓Interim reanalysis (ERS, QuikSCAT)
- ✓ ERS/ASCAT well inter-calibrated
- ✓ESA ERS reprocessing underway
- ERS/QuikSCAT inter-calibration to be revisited

Pending operational changes ✓ASCAT EARS has been assessed

Ongoing research

✓ Include option for ocean currents and neutral winds in SCAT observation operator (switch in current model cycle)

Summary/final remarks

Scatterometer data from ERS-2, QuikSCAT and ASCAT are routinely assimilated:

- ✓ Operational model
- ✓ Interim reanalysis (ERS, QuikSCAT)
- ✓ ERS/ASCAT well inter-calibrated
- ✓ESA ERS reprocessing underway
- ERS/QuikSCAT inter-calibration to be revisited

Pending operational changes ✓ASCAT EARS has been assessed

Ongoing research

✓ Include option for ocean currents and neutral winds in SCAT observation operator (switch in current model cycle)

ECMWF

ERS and ASCAT together fill in data gaps

Slide 13

OVWST meeting, Boulder (CA), 18-20 May 2009

BACK UP SLIDES

OVWST meeting, Boulder (CA), 18-20 May 2009

Figure 39: Biases observed in backscatter levels, based on ocean calibration for ERS-1 (top panels), respectively ERS-2 (lower panels) for the indicated periods, and relative to the nominal period for ERS-2 (lower right-hand panel). The vertical scale varies between the plots.

ECMWF 🕶

Usage of ocean current/neutral wind in the ECMWF assimilation system

Adaptation of the scatterometer cost function:

$$J_o^{\text{scatt}}(\vec{\mathbf{u}}^{\text{mod}}, \text{scatt}) = \frac{||\vec{\mathbf{u}}^{\text{mod}} - \vec{\mathbf{u}}^{\text{scatt}}||^2}{\sigma_0^2}$$

Here, $\vec{\mathbf{u}}^{\text{mod}}$ is the scatterometer observation operator. It is determined from the wind $\vec{\mathbf{u}}_L$ at lowest model level z_L (Geleyn 1988):

$$\vec{\mathbf{u}}_{\rm rel}(z_{\rm obs}) = R\vec{\mathbf{u}}_{\rm rel}(z_L),$$

where

$$R = R(z_{\text{obs}}/z_L, z_0, \text{stability}), \qquad R = 1, \text{ for } z_{\text{obs}} = z_L.$$

Since now $\vec{\mathbf{u}}_L = \vec{\mathbf{u}}_{abs}(z_L)$, rather than $\vec{\mathbf{u}}_{rel}(z_L)$

scatterometer:
$$\vec{\mathbf{u}}^{\text{mod}} = \vec{\mathbf{u}}_{\text{rel}}(z_{\text{obs}}) = R (\vec{\mathbf{u}}_{\text{L}} - \vec{\mathbf{u}}_{\text{oc}})$$

buoy/ship: $\vec{\mathbf{u}}^{\text{mod}} = \vec{\mathbf{u}}_{\text{abs}}(z_{\text{obs}}) = R \vec{\mathbf{u}}_{\text{L}} + (1 - R) \vec{\mathbf{u}}_{\text{oc}}$

The usage of ASCAT data at ECMWF

Hans Hersbach

Impact of ASCAT and IASI on the ECMWF analysis system

- > Vector wind from ASCAT and radiances from IASI were introduced on 12 June 2007.
- A positive effect on the quality of ECMWF winds emerged from a comparison with (already active) QuikSCAT data

ECMWF

Collocation of ERS-2 and ASCAT

(for one year, $\Delta t < 60 \text{ min}$, $\Delta x < 25 \text{ km}$)

Both ASCAT and ERS-2 data are bias-corrected at ECMWF
Both inter-compare very well: no bias, very low scatter

Slide 19 ECMWF