Ekman Transport and Depth-integrated Ocean Meridional Transport
Preliminary Results

W. Timothy Liu and Xiaosu Xie

- Heat Transport
- Water Transport
- Long Term Variability
Ekman water transport

$$EWT(\theta) = \int_{x_1}^{x_2} -\frac{\tau_x}{\rho f} \, dx$$

τ_x: Zonal stress

T_e: Potential temp. of Ekman layer

\overline{T}: Mean potential temp. of the water column

Ekman heat transport

$$EHT(\theta) = -c_p \int_{x_1}^{x_2} \frac{\tau_x}{f} (T_e - \overline{T}) \, dx$$

Sato, Polito, & Liu, 2002: GRL, 29(17)

Sprintall & Liu, 2005: Oceanography, 18(4)
Intensification of poleward Ekman heat transport since 1998 in the tropics
Intensification of poleward Ekman water transport from 1998 in the tropics
Intensification of poleward Ekman heat transport since 1998 in the tropics
Intensification of poleward Ekman water transport from 1998 in the tropics
Ekman heat transport in the subtropical Atlantic is correlated with NAO
Ekman water transport in the subtropical Atlantic is correlated with NAO
Ekman heat transport anomaly 5N-12N
SSM/I QuikSCAT

SSM/I EHT anomaly (PW) 5N-12N Pacific
-Nino 3 index

SSM/I EHT anomaly (PW) 12S-5S
QuikSCAT
-Nino 3 index

5S-12S
Impact of ENSO on Ekman water transport in the equatorial Pacific
Meridional Heat Transport (MHT)

Conservation of heat

\[
\frac{\partial H}{\partial t} + \nabla \cdot \zeta = SW - LW - LH - SH
\]

By Green’s theorem

\[
MHT(\theta) = \int_{\theta}^{\theta_0} \int_{x_1}^{x_2} \left(\frac{\partial H}{\partial t} - SW + LW + LH + SH \right) dx dy
\]

H: Heat content
\zeta: Horizontal heat flux
SW: Short wave radiation
LW: Long wave radiation
LH: Latent heat
SH: Sensible heat
Meridional Water Transport (MWT)

Conservation of water mass

\[\frac{\partial M}{\partial t} + \nabla \cdot \psi = P - E \]

By Green’s theorem

\[\text{MWT}(\theta) = \int_{\theta}^{\theta_0} \int_{x_1}^{x_2} \left(\frac{\partial M}{\partial t} + E - P - R \right) dx dy \]

P: Precipitation
E: Evaporation
\(\psi \): Horizontal mass flux
R: River discharge
Atlantic total northward water transport

Peak poleward transport in winter in the tropics
Summary

- Spacebased data provide almost continuous spatial and temporal coverages for Ekman and total meridional transport for a decade.
- Reality checks are needed.
- What is the relation between surface Ekman transport in the total meridional transport need physical interpolation.
REPORT OF THE JSC/CCEO

'CAGE' EXPERIMENT: A FEASIBILITY STUDY

WCP - 22
MAY 1982
backup
Intensification of poleward Ekman water transport from 1998 in the tropical Pacific.
Intensification of poleward Ekman heat transport from 1998 in the tropical Pacific
Red - divergence of water vapor transport integrated over depth of the atmosphere
Black - sum of climatological river discharge across all coastline
Green - loss rate of water stored in all oceans from GRACE
---- difference between fresh water flux and river input

Green - subtracting climatological steric change from altimeter
HYDROLOGIC BALANCE

$$\frac{\partial W}{\partial t} + \nabla \cdot \Theta = E - P$$

$$\Theta = \frac{1}{g} \int_{0}^{p_0} q Ud\rho$$

$$W = \frac{1}{g} \int_{0}^{p_0} q d\rho$$

$$\Theta = U_e W$$

$U_e = f(U_s)$ Liu (1993)-polynomial
Liu & Tang (2005) - Neural Network

$U_e = U_{850mb}$ Heta & Mitsuta (1993)
Both U_s & U_{850mb} Xie et al. (2007) - SVR
Subtropical South Pacific

CC = 0.856

15–100 days

E–P

CC = 0.913

10–14 months

180–160W, 20S–10S