

Improvements to the Wind Driven Component of the OSCAR Surface Current Product

Kathleen Dohan, Gary S. E. Lagerloef, and John T. Gunn

Earth & Space Research Seattle, Washington

Ocean Surface Currents Analyses Realtime processing system (OSCAR) is a satellite-derived surface current database based on a combination of quasi-steady geostrophic and locally wind-driven dynamics (Bonjean and Lagerloef, 2002).

- The geostrophic term is computed from the gradient of surface topography fields (AVISO/CLS).
- Wind-driven velocity components are computed from an Ekman/Stommel formulation with variable viscosity using QuikSCAT winds (FSU/COAPS)
- with a thermal wind adjustment using satellite SST data.
- Data available at http://www.oscar.noaa.gov.

Introduction

- State of the improvements to the currently available OSCAR system.
- Examination of the wind-driven component
 - Vertical eddy viscosity parameterization as a function of the wind
- Future directions.

OSCAR Latest Developments

Developments to OSCAR: increased grid spacing from one degree to 1/3 degree

- SSH gradient calculation for geostrophic component revised to suit 1/3 degree grid with extensive Cal/Val
- Larger coverage of data towards coasts
- Improved model in equatorial region
- Fewer spuriously large values (mostly along coasts).
- Available through ftp at ftp://ftp.esr.org/pub/datasets/SfcCurrents/ThirdDegree/ and soon through http://www.aoml.noaa.gov/phod/dac/drifter_climatology.html.

Comparison with Drifters Gulf Stream

Currents are interpolated onto the drifter locations (which have been averaged over 1 day). Zonal and meridional currents vs drifter velocities.

Comparison with Drifters Gulf Stream

OSCARthirddeg & DRIFTER DATA: Jun.01,2006–Sep.01,2006 Background field: OSCARthirddeg monthly mean

Quasi-linear steady flow in a surface layer with turbulent mixing parameterized by a constant vertical eddy viscosity. Frontal model: buoyancy force θ is a function of SST horizontal gradients only. Surface layer velocity $\overline{\mathbf{U}}$ by averaging over the top 30m.

(1)
$$if\bar{\mathbf{U}} = -g \bigtriangledown \zeta + \frac{h}{2} \bigtriangledown \theta + \frac{\tau - A\frac{\partial \mathbf{U}}{\partial z}|_{-h}}{h}.$$

Stommel model boundary conditions

(2)
$$\frac{\partial \mathbf{U}}{\partial z}(z=0) = \tau/A$$

(3)
$$\frac{\partial \mathbf{U}}{\partial z}(z = -H) = 0$$

where: $\mathbf{U} = u + i * v$, τ is surface wind stress, h = 30m, ζ is SSH, θ is SST and A is a vertical eddy viscosity, calculated as a function of wind

(4)
$$A = \boldsymbol{a} \left(\frac{|\mathbf{W}|}{W_0}\right)^{\boldsymbol{b}}.$$

Pacific Sample Region

- Currents are interpolated onto the drifter locations (which have been averaged over 1 day). Zonal and meridional currents vs drifter velocities.
- Sensitivity to the parameter value a has been tested, with attention to different dynamical regimes. Coefficient a is varied from 1e-06 to 1e-03. Exponent b is varied from 2 to 2.2. Depth-scale H is varied from 30m to 150m.

Pacific Sample Region Comparison with Drifters

Pacific a=2.8e-04 b=2 DRIFTERS 01-Jan-2007 to 01-Mar-2007

- Well underestimating the magnitude of currents in the open basins: 1 degree winds, 10 day smoothing
- Optimal values for a varies between 8×10^{-5} and 5×10^{-4} with little variation.
- Correlations steadily increase from January to August (0.3 to 0.6).

Equatorial Sample Region

Currents are interpolated onto the drifter locations (which have been averaged over 1 day). Zonal and meridional currents vs drifter velocities.

Sensitivity to the parameter value *a* has been tested, with attention to different dynamical regimes. Coefficient *a* is varied from 1e-06 to 1e-03. Exponent *b* is varied from 2 to 2.2. Depth-scale *H* is varied from 30m to 150m.

Equatorial Sample Region Comparison with Drifters

Optimal choice for a consistent with $8 \times 10^{-5} \text{ m}^2 \text{s}^{-1}$ in Santiago-Mandujano & Firing (JPO 1990).

Little variation with a and b, except in amplitude of meridional: slope ranges from 0.52 - 1.55.

Equatorial Region Climatology

Climatological means are compared to drifter climatology using seasonal and regional climatologies along the equatorial region. Sample region and results shown here.

Equatorial Region Climatology

Parameter values are blended from $a = 8 \times 10^{-5} \text{ m}^2 \text{s}^{-1}$, b = 2.2 at the equator to $2.85 \times 10^{-4} \text{ m}^2 \text{s}^{-1}$, b = 2 for a global value.

- OSCAR surface currents compare well with drifter velocities in regions of strong SSH gradients: boundary currents, zonal equatorial component, ACC.
- Amplitudes are underestimated outside the above regions, with lower velocity correlations.
- Wind-driven velocities are fairly insensitive to the value of the eddy viscosity, except for meridional amplitude around the equator.
- Mid-latitudes show a seasonal trend in drifter comparison.
- Wind-driven velocities are insensitive to the depth value H.
- Mooring analyses are inconclusive, with varying optimal viscosity values for equatorial region, season, and statistical quantity calculated.

- Improve the wind-driven turbulent mixing scheme
 - vertically varying eddy viscosity e.g. law of the wall versus slab
 - incorporate ARGO mixed layer depths
 - vary models according to dynamical regions
- Incorporate faster timescales in wind driven OSCAR component
 - Include time-dependent dynamics in OSCAR to include high-frequency wind-driven currents
 - Separate by timescales the geostrophic from the wind-driven components
 - 1 day winds
 - Examine inertial motions in drifter datasets
- Extend OSCAR capability to nowcast and forecast
- **Gulf Stream movie**