VOCALS Winds, Clouds and the Surface Heat Budget

Simon de Szoeke

Rob Wood, Clayton Paulson, Larry O'Neill, Peter Gaube

Ocean Vector Winds Science Team meeting

Boulder, CO May 2009

Stratus synthesis of NOAA ship observations

http://www.esrl.noaa.gov/psd/psd3/synthesis

- Fall 2001, 2003-2008 (7 years) 20°S, 75-85°W.
- Integrate measurements of
 - Surface meteorology
 - Turbulent and radiative fluxes
 - Cloud vertical structure: top, base, and LCL.
 - Doppler cloud radar (VOCALS 2008)
 - Column water vapor and liquid water path
 - Rawinsonde profiles
 - Aerosols
- Assess model and gridded products from in situ observations.

VOCALS ship/QuikSCAT comparison

- 132 QuikSCAT independent wind pixel retrievals from 10 hours fall within 100 km of the ship.
- Do ship and QuikSCAT agree?
 systematic differences
- How representative are ship-QuikSCAT coincidences?

VOCALS **ship** observations compared with QuikSCAT gridded wind

Wind speed agrees well.

Wind direction agrees poorly.

VOCALS ship observations compared with QuikSCAT gridded wind

Wind speed agrees well.

Wind direction correction not understood.

VOCALS **IMET buoy** observations compared with QuikSCAT gridded wind

Wind speed and direction agree well.

Fluxes in the surface heat budget

QuikSCAT wind stress divergence

Peter Gaube

TMI cloud liquid water

Radiosonde profiles along 20°S

PBL height tilted west in 2001, 2005, 2006, 2007; no tilt in 2003, 2004, 2008 (leg 1).

C-130 85° W sections can identify if this is synoptic variability.

Ship-based 3.2-mm cloud radar Doppler vertical velocity

Divergence and CLW vs. SST

10-m Wind Divergence Annual Averages over 10°x10° Box Centered at 85°W,20°S **CIW** 0.6 0.025 (a) (b) 0.02 del.U (m/s/10²km) C CLW Anomaly (mm) 0.015 0.01 0.005 0 0 -0.005 -2 2 -2 2 1 -1 0 -1 0 1 SST Anomaly (^oC) SST Anomaly (^oC)

SST Anomaly

Paulson and Wijesekera

Summary

- Flux and cloud model errors in the southeast Pacific
- VOCALS REx ship, buoy, aircraft observations
- Diagnose surface heat budget
- Challenge: upscale fine in situ observations to regional and global scales.
- Satellite observations for VOCALS
 Wind agrees with buoy; speed agrees with ship.
- Synoptic variability in wind, cloud, & SST:
 weak divergence → convective cloud
 strong divergence → stratiform cloud

VOCALS ship wind and coincident QuikSCAT swath observations

Direct measurement of turbulent stress components

Jeff Hare

October balance

Satellite data support for VOCALS Regional Experiment at http://numbat.coas.oregonstate.edu/vocals/

Peter Gaube

Synoptic atmospheric variability in VOCALS REx

Rob Wood

Synoptic atmospheric variability in VOCALS REx

75-90°W, 15-25°S

20S

Time-longitude plots of high-pass filtered SSH and SST along 20S

cyclonic.....anticyclonic____

•Eddies transport heat

•Wind-SST coupling

