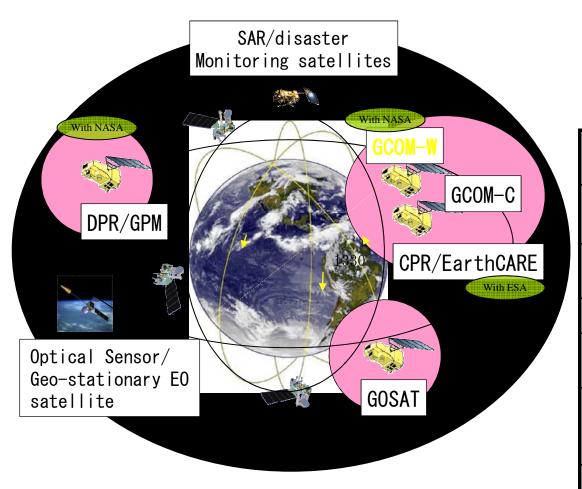

# Global Change Observation Mission (GCOM)

Ocean Vector Winds Science Team
Meeting
Boulder, CO
May18,2009
Haruhisa Shimoda, Hiroshi Murakami
Taikan Oki, Yoshiaki Honda
EORC, JAXA


#### **GEOSS 10 year implementation plan**



# To develop and operate an Earth Observation Network for GEOSS

To develop advanced satellites

→to aim cutting edge system and
mutual complementary system to the
operational system such as WWW,
NPOESS



#### A plan of advanced satellites

AMCD 2 Conttoromotor

| Sea surface wind vector       | (GCOM-W)                                                                                 |
|-------------------------------|------------------------------------------------------------------------------------------|
| SST                           | AMSR 2 (GCOM-W)                                                                          |
|                               | SGLI (GCOM-C)                                                                            |
| Cloud<br>structure            | Cloud Profiling Radar (EarthCARE)                                                        |
| Aerosol                       | SGLI (GCOM-C)                                                                            |
| CO <sub>2</sub> concentration | TANSOr (GOSAT)                                                                           |
| Precipitation                 | Dual-frequency<br>Precipitation Radar<br>(GPM)                                           |
| Disaster<br>monitoring        | SAR/disaster monitoring<br>satellites, Optical Sensor/<br>Geo-stationary EO<br>satellite |

# **GCOM Mission**

- Continuation of ADEOS II
- Contribution to GEOSS
- Climate, Weather, Water, Ecosystem, Agriculture, etc. in GEOSS 9 areas
- Focus on Climate change / Global warming and Water cycle committed in Summit
- Contribution to operational fields like weather forecast, fisheries, etc.
- Long term continuous measurements

# Scientific Targets

- Accurate estimation of aerosol radiative forcing
- Validation of climate models
- Accurate estimation of primary production
- Better understanding of coastal phenomena
- Better understanding of sea ice trend

# **Operational Applications**

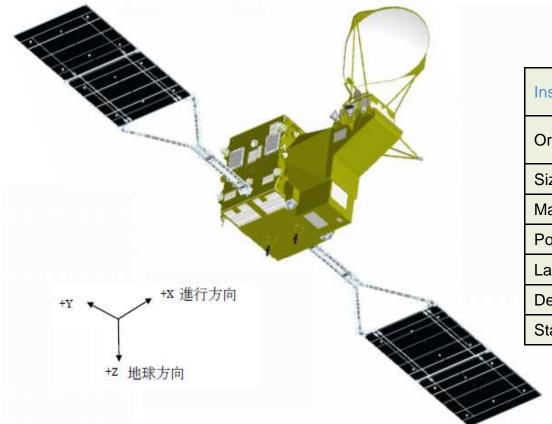
- Input to NWP
- Extreme weather forecasting
- Fisheries
- Navigation
- Coastal management
- Crop yield estimation
- Monitoring forest decrease
- Monitoring volcano eruptions
- Monitoring forest fire

# **GCOM** satellites

- GCOM-W1
  - AMSR2 (Advanced Microwave Scanning Radiometer 2)
  - Planned to be launched in fiscal, 2011
- GCOM-C1
  - SGLI (Second generation Global Imager)
  - Planned to be launched in fiscal 2013
- Plan for the 2<sup>nd</sup> and 3<sup>rd</sup> generations
  - GCOM-W2 (in 2015),
     GCOM-W3 (in 2019)
  - GCOM-C1 (in 2017),GCOM-C3 (in 2021)






## GCOM-W1

- Orbit
  - Sun synchronous orbit
  - Height: about 700km
  - Local time of ascending node: 13:30
- Weight: about 1.9t
- Power Consumption: about 4kW
- Lifetime: 5 years
- Data transmission
  - Global observation data are stored and transmitted every orbit period
  - Observed data are transmitted to ground stations in real time

## Downlink

- Freq: 8245MHz
- Polarization : RHCP
- Modulation : OQPSK
- Data Rate: 10Mbps (20Msps)
- Coding: CCSDS, Reed-Solomon, convolution

# CCOM-1/1/1 catellite



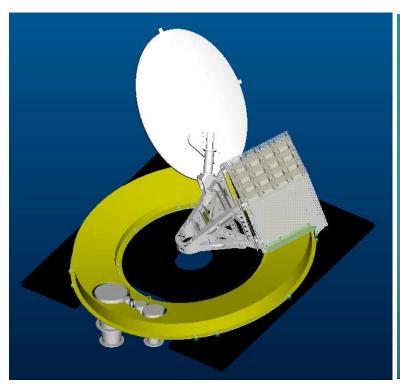
GCOM-W (Water)

| Instrument  | Advanced Microwave Scanning Radiometer-2                      |
|-------------|---------------------------------------------------------------|
| Orbit       | Sun Synchronous orbit<br>Altitude: 699.6km (over the equator) |
| Size        | 5.1m (X) * 17.5m (Y) * 3.4m (Z)                               |
| Mass        | 1880kg                                                        |
| Power       | Over 4050W                                                    |
| Launch      | JFY2011 (CY2012 Winter)                                       |
| Design Life | 5-years                                                       |
| Status      | Preliminary Design started in JFY2007                         |

- GCOM-W1/AMSR2 will contribute to long-term observation of global water and energy cycle.
- Continue AMSR-E observation (high spatial resolution, low-frequency channels,etc.).
- Construct reliable long-term dataset to contribute for understanding and monitoring of climate change.
- Contribute to operational use by providing continuous cloud-through SST, frequent and quantitative storm observation to maintain precipitation forecast accuracy.

# Basic requirements for AMSR 2

- Minimum modifications from AMSR on ADEOS-II to reduce risks/cost and keep the earliest launch date.
- Several essential improvements.
  - Improvement of calibration system including warm load calibration target.
  - Consideration to C-band radio frequency interference (RFI).
- Combination with SeaWinds-type scatterometer is highly desired.


# Basic requirements for AMSR 2

- Antenna: 2.0m, offset parabolic antenna
- Channel sets
  - Identical to AMSR-E (no O<sub>2</sub> band channels)
  - 6.925,7.3, 10.65, 18.7, 23.8, 36.5, 89.0GHz
  - Dual polarization
- Calibration
  - Improvements of hot load etc.
  - Enhance pre-launch calibration testing
- Orbit
  - Afternoon orbit with 700~800km altitude
- Mission life
  - 5 years

# Improvement of hot load

- Adoption of temperature controlled reflector over hot load
- Minimize the effect of thermal interference
- Design results shows the maximum temperature difference less than 2K
- Brightness temperature accuracy will be around 0.1K

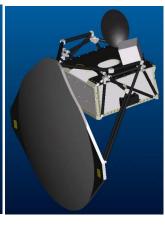
# Prototyping and testing





Calibration Assembly

MPU testing board


# Temperature Resolution

| Frequency | Resolution(target) |
|-----------|--------------------|
| 6.925     | -0 24(0 2)         |
| 0.925     | <0.34(0.3)         |
| 7.3       | <0.43              |
| 10.65     | < 0.7(0.6)         |
| 18.7      | < 0.7(0.6)         |
| 23.8      | < 0.6(0.55)        |
| 36.5      | < 0.7(0.65)        |
| 89.0      | < 1.2(1.1)         |

# Overview of AMSR2 instrument Deployable main reflector system with 2.0m diameter.

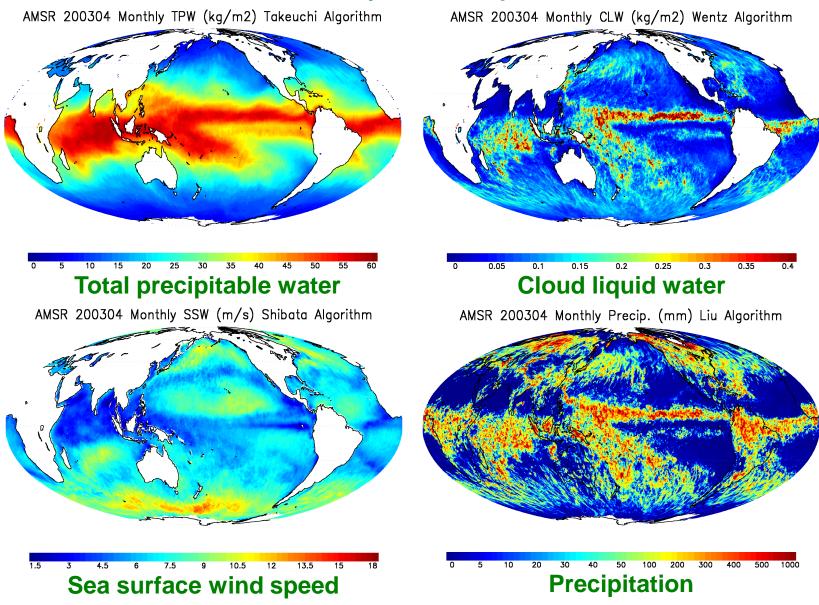




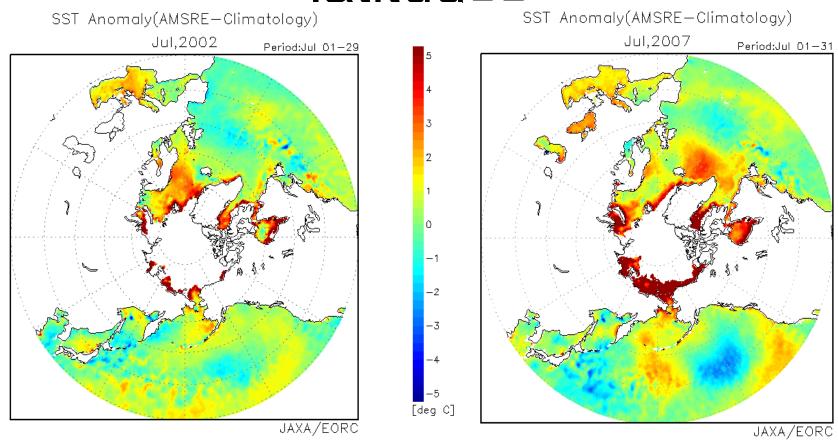


Deployed

Stowed

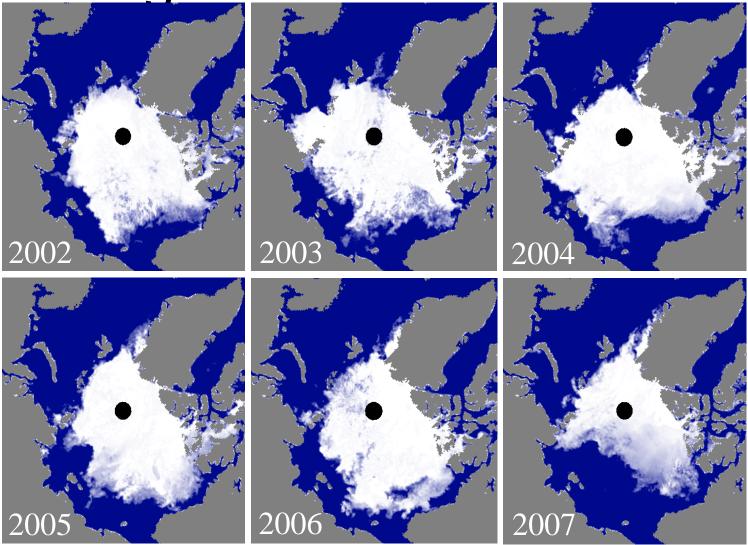

- Frequency channel set is identical to that of AMSR-E except 7.3GHz channel for RFI mitigation.
- Two-point external calibration with the improved HTS (hotload).
- Deep-space maneuver will be considered to check the consistency between main

| GCOM-W1/AMSR2 characteristics |                                                          |  |  |
|-------------------------------|----------------------------------------------------------|--|--|
| Orbit                         | Sun Synchronous with 699.6km altitude (over the equator) |  |  |
| Launch                        | JFY2011                                                  |  |  |
| Design-Life                   | 5-years                                                  |  |  |
| Local time                    | 13:30 LTAN                                               |  |  |
| Swath width                   | 1450km                                                   |  |  |
| Antenna                       | 2.0m offset parabola                                     |  |  |
| Incidence<br>angle            | Nominal 55 degree                                        |  |  |


|                           | AMSR2 Channel Set          |                      |                                              |                                  |  |  |
|---------------------------|----------------------------|----------------------|----------------------------------------------|----------------------------------|--|--|
| Cente<br>r Freq.<br>[GHz] | Band<br>width<br>[MHz<br>] | Polari<br>zatio<br>n | Beam width<br>[deg]<br>(Ground res.<br>[km]) | Samplin<br>g<br>interval<br>[km] |  |  |
| 6.925                     | 050                        |                      | 1.8 (35 x 62)                                |                                  |  |  |
| 7.3                       | 350                        |                      | 1.7 (34 x 58)                                |                                  |  |  |
| 10.65                     | 100                        | V                    | 1.2 (24 x 42)                                | 10                               |  |  |
| 18.7                      | 200                        | and                  | 0.65 (14 x 22)                               | _                                |  |  |
| 23.8                      | 400                        | Н                    | 0.75 (15 x 26)                               |                                  |  |  |
| 36.5                      | 1000                       |                      | 0.35 (7 x 12)                                |                                  |  |  |
| 89.0                      | 3000                       |                      | 0.15 (3 x 5)                                 | 5                                |  |  |

## Oceanic geophysical parameters by AMSR

#### **Global Monthly Mean in April 2003**




# SST anomaly in northern high latitudes



Monthly SST anomaly in northern high latitude oceans for July 2002 (left) and July 2007 (right).

Changes in AMSR-E sea ice



AMSR-E sea ice extent over northern polar region on August 20 of recent 6 years (2002-2007). Images were obtained from the Arctic Sea-Ice Monitor site maintained by the International Arctic Research Center (http://www.ijis.iarc.uaf.edu/en/index.htm).

| products          | IFOV   | std. accr.                | dynamic range          |
|-------------------|--------|---------------------------|------------------------|
| brightness temp.  | 5-50km | ±1.5K                     | 2.7-340K               |
| total prec. water | 15km   | ±3.5kg/m <sup>3</sup>     | 0-70kg/m <sup>3</sup>  |
| cloud liq. water  | 15km   | ±0.05kg/m <sup>2</sup>    | 0-1.0kg/m <sup>2</sup> |
| precipitation     | 15km   | Ocean: 50%<br>Land: ±120% | 0-20mm/h               |
| SST               | 50km   | ±5 °C                     | <b>-2-35</b> °C        |
| sea surf. winds   | 15km   | ±1m/s                     | 0-30m/s                |
| sea ice conc.     | 15km   | ±10%                      | 0-100%                 |
| snow depth        | 30km   | ±20cm                     | 0-100cm                |
| soil moisture     | 50km   | ±10%                      | 0-40%                  |

# CGOM-C1

- Orbit
  - Sun synchronous orbit
  - Height: about 800km
  - Local time of descending node: 10:30
- Weight: about 2.0t
- Power Consumption: about 4kW
- Lifetime: 5 years
- Data transmission
  - Global observation data are stored and transmitted every orbit period
  - Observed data over Japanese islands are transmitted to JAXA ground station in real time

# **SGLI**

- Wide spectrum coverage
- Near UV, VIS, NIR, SWIR, TIR
- Polarization measurements
- Multiple angle observation
- Multiple telescopes

## **VNR**

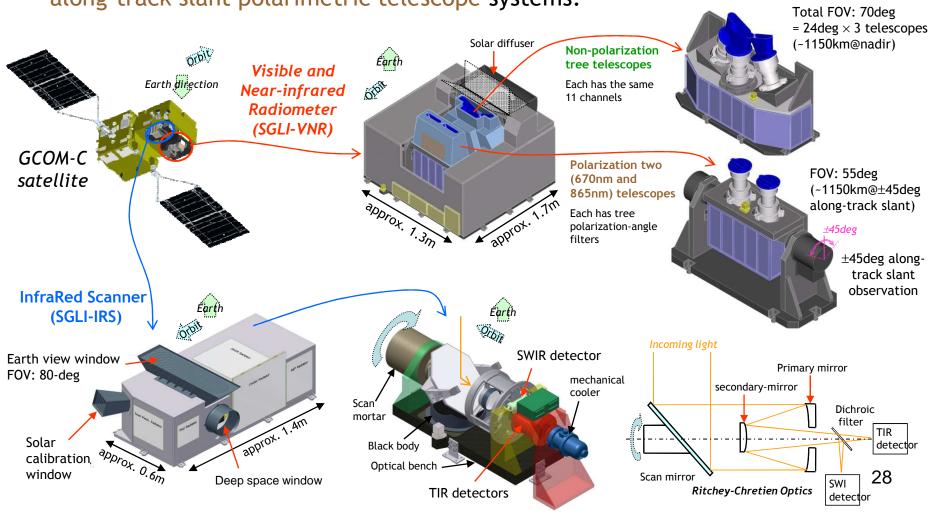
- Composed of 3 telescopes to cover the total swath
- Each telescope covers 24 degree achieving 70 degree in total

## Polarization

- Composed of 1 telescope for each channel
- IFOV is 55 degree
- Looking fore, nadir & aft
- One camera with tilt or two cameras?

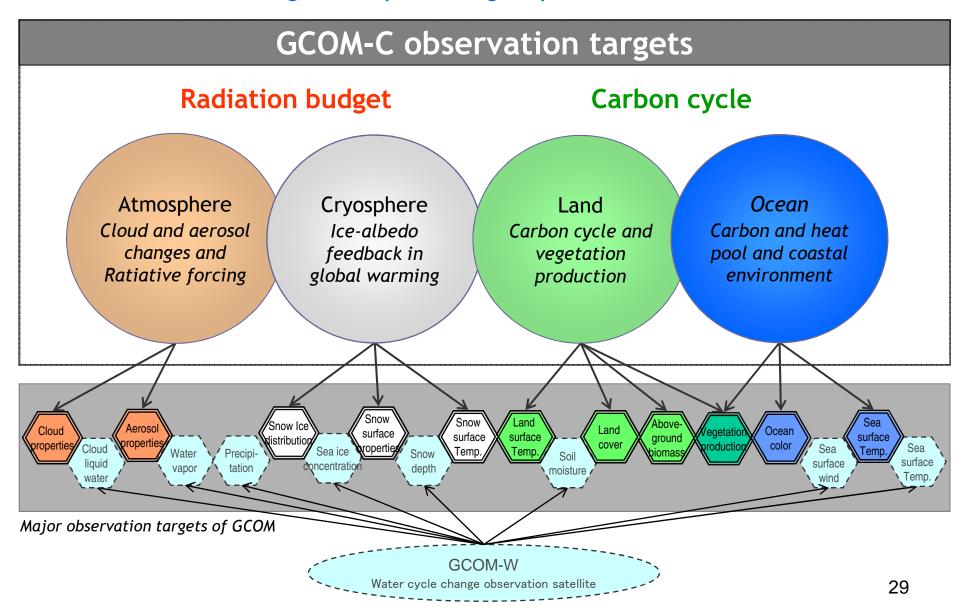
| VNIR |                         |             |                    |                         |                                              |     |
|------|-------------------------|-------------|--------------------|-------------------------|----------------------------------------------|-----|
| Ch.  | central wavelength [nm] | IFOV<br>[m] | <b>⊿</b> λ<br>[nm] | Lλ<br>[W/m²/str/<br>μm] | $L_{max}$ . [W/m <sup>2</sup> /str/ $\mu$ m] | S/N |
| VN1  | 380                     | 250         | 10                 | 60                      | 210                                          | 250 |
| VN2  | 412                     | 250         | 10                 | 75                      | 250                                          | 400 |
| VN3  | 443                     | 250         | 10                 | 64                      | 400                                          | 300 |
| VN4  | 490                     | 250         | 10                 | 53                      | 120                                          | 400 |
| VN5  | 530                     | 250         | 20                 | 41                      | 350                                          | 250 |
| VN6  | 565                     | 250         | 20                 | 33                      | 90                                           | 400 |
| VN7  | 670                     | 250         | 10                 | 23                      | 62                                           | 400 |
| VN8  | 670                     | 250         | 20                 | 25                      | 210                                          | 250 |
| VN9  | 763                     | 1000        | 8                  | 40                      | 350                                          | 400 |
| VN10 | 865                     | 250         | 20                 | 8                       | 30                                           | 400 |
| VN11 | 865                     | 250         | 20                 | 30                      | 270                                          | 200 |

# Polarization channels (3 directions)


| Ch.  | central wavelength [nm] | IFOV<br>[m] | ⊿λ<br>[nm] | Lλ<br>[W/m²/str/<br>μm] | $\begin{array}{c} L_{max}.\\ [\text{W/m}^2/\text{str/}\\ \mu\text{m}] \end{array}$ | S/N |
|------|-------------------------|-------------|------------|-------------------------|------------------------------------------------------------------------------------|-----|
| P1-1 | 670                     | 1000        | 20         | 25                      | 250                                                                                | 250 |
| P1-2 | 670                     | 1000        | 20         | 25                      | 250                                                                                | 250 |
| P1-3 | 670                     | 1000        | 20         | 25                      | 250                                                                                | 250 |
| P2-1 | 865                     | 1000        | 20         | 30                      | 300                                                                                | 250 |
| P2-2 | 865                     | 1000        | 20         | 30                      | 300                                                                                | 250 |
| P2-3 | 865                     | 1000        | 20         | 30                      | 300                                                                                | 250 |
|      |                         |             |            |                         |                                                                                    |     |

| IRS |                               |         |      |                                                             |     |                          |
|-----|-------------------------------|---------|------|-------------------------------------------------------------|-----|--------------------------|
| Ch. | central<br>wavelength<br>[µm] | IFOV[m] |      | L <sub>λ</sub> [W/m <sup>2</sup> /s<br>tr/μm] or<br>Tstd[K] | Or  | S/Nor<br>NEdT@3<br>00[K] |
| SW1 | 1.05                          | 1000    | 0.02 | 57                                                          | 248 | 500                      |
| SW2 | 1.38                          | 1000    | 0.02 | 8                                                           | 103 | 150                      |
| SW3 | 1.63                          | 250     | 0.2  | 3                                                           | 50  | 57                       |
| SW4 | 2.21                          | 1000    | 0.05 | 1.9                                                         | 20  | 211                      |
| T1  | 10.8                          | 500     | 0.7  | 300                                                         | 340 | 0.2                      |
| T2  | 12.0                          | 500     | 0.7  | 300                                                         | 340 | 0.2                      |
|     |                               |         |      |                                                             |     |                          |

#### 2. GCOM-C products and SGLI design


- 2.8 SGLI design (VNR and IRS)
- SGLI system consists of two components: SGLI-VNR and SGLI-IRS to optimize optics for each wavelength range

• SGLI-VNR consists of 11-channel non-polarimetric telescope and 2-channel along-track slant polarimetric telescope systems.



### 2. GCOM-C products and SGLI design

- 2.1 mission target and product groups



#### **Standard products (land)**

| products              | GSD       | accuracy  |
|-----------------------|-----------|-----------|
| radiance              | 250/1000m | 5%, 0.5K  |
| geom. corr. rad.      | 250m      | 0.5pixel  |
| land surface refl.    | 250m      | 5%/10%*1  |
| veg. index            | 250m      | 20%/15%*2 |
| veg. roughness. index | 1km       | 20%/15%*2 |
| shadow index          | 1km       | 20%/15%*2 |
| land surf. temp       | 500m      | 2.5K      |
| fAPAR                 | 250m      | 30%/20%*2 |
| LAI                   | 250m      | 30%       |
| above ground biomass  | 1km       | 30%       |

<sup>\*1 : &</sup>gt;443nm / **≤**443nm

<sup>\*2 :</sup> grass land / forest

## Research products (land)

| products                | GSD  | accuracy |
|-------------------------|------|----------|
| net primary prod.       | 1km  | TBD      |
| veg. water stress index | 500m | TBD      |
| fire                    | 500m | TBD      |
| land cover class.       | 250m | TBD      |
| land surface<br>albedo  | 1km  | TBD      |

### **Standard products (atmosphere)**

| products                   | GSD      | accuracy |
|----------------------------|----------|----------|
| cloud flag/type            | 1km      |          |
| cloud type & amount        | 1km/0.1° | 15%      |
| cloud top temp/altitude    | 1km/0.1° | 3k/2km   |
| opt. thick. of water cloud | 1km/0.1° | 100%     |
| opt. thick. of cirrus      | 1km/0.1° | 70%      |
| aerosol over ocean         | 1km/0.1° | 0.1      |
| aerosol over land UV       | 1km/0.1° | 0.15     |
| aerosol over land pol.     | 1km/0.1° | 0.15     |

## Research products (atmosphere)

| products                             | GSD      | accuracy |
|--------------------------------------|----------|----------|
| geom. thickness of water clouds      | 1km/0.1° | N/A      |
| land surface long wave radiant flux  | 1km/0.1° | N/A      |
| land surface short wave radiant flux | 1km/0.1° | N/A      |

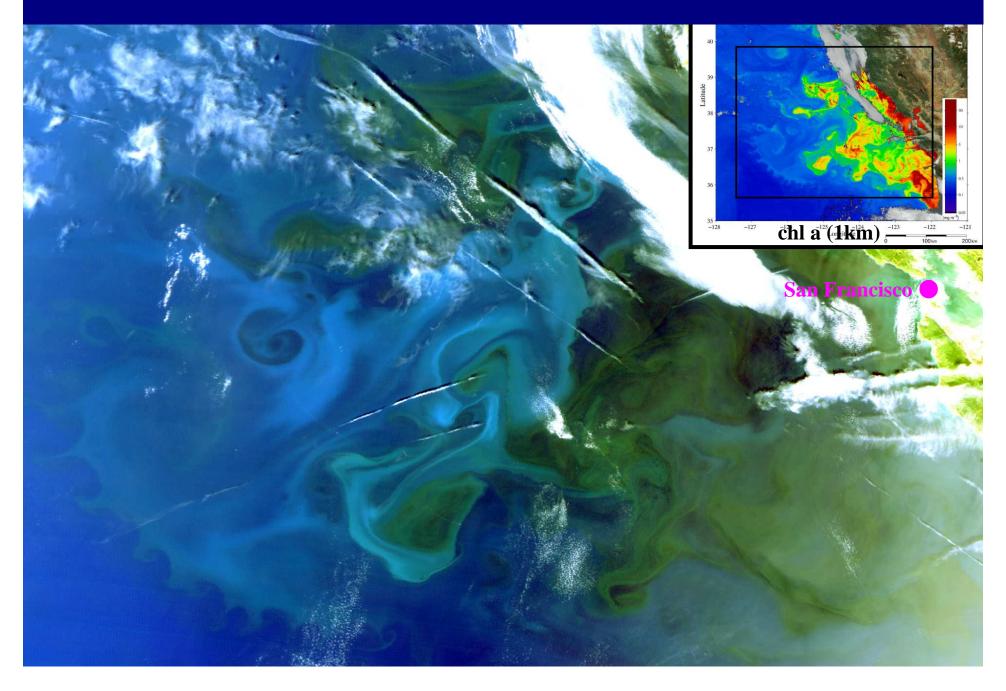
#### **Standard products (ocean)**

| products                    | GSD                  | accuracy  |
|-----------------------------|----------------------|-----------|
| normalized water leav. rad. | 250m/1km/4-9km<br>*1 | 50%       |
| atm. corr. parameter        | 250m/1km/4-9km       | 50%       |
| PAR                         | 250m/1km/4-9km       | 15%       |
| chlorophyll-a               | 250m/1km/4-9km       | -60-+150% |
| SS                          | 250m/1km/4-9km       | -60-+150% |
| CDOM                        | 250m/1km/4-9km       | -60-+150% |
| SST                         | 500m/1km/4-9km       | 0.8K      |

<sup>\*1:250</sup>m:coastal, 1km: open ocean, 4-9km: global

## Research products (ocean)

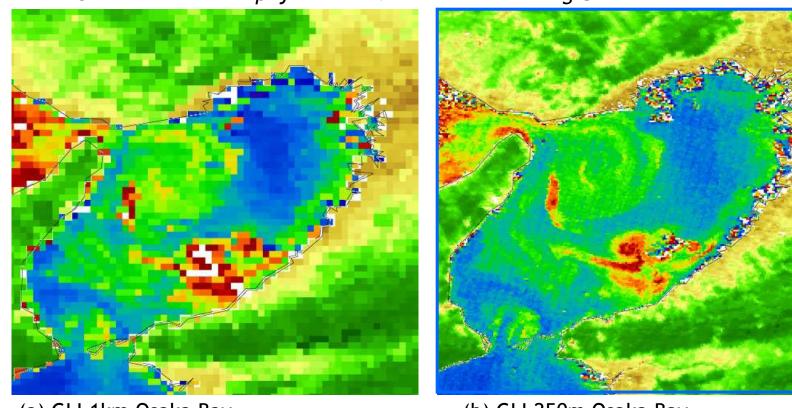
| products                         | GSD            | accuracy |
|----------------------------------|----------------|----------|
| euphotic zone depth              | 250m/1km/4-9km | N/A      |
| intrinsic opt. char. of seawater | 250m/1km/4-9km | N/A      |
| primary production               | 500m/1km/4-9km | N/A      |
| phytoplankton type               | 250m/1km/4-9km | N/A      |
| red tide                         | 250m/1km/4-9km | N/A      |
| sensor fusion ocean color        | 250m/1km       | N/A      |
| sensor fusion SST                | 500m/1km       | N/A      |


## **Standard products (cryosphere)**

| products                     | GSD      | accuracy |
|------------------------------|----------|----------|
| snow & ice cover             | 250m/1km | 7%       |
| sea ice dist. in Okhotsk sea | 250m     | 5%       |
| snow/ice surface temp.       | 500m/1km | 2K       |
| snow particle size           | 250m/1km | 50%      |

### Research products (cryosphere)

| products                           | GSD      | accuracy |
|------------------------------------|----------|----------|
| snow/sea ice class.                | 1km      | N/A      |
| snow cover over mountains          | 250m     | N/A      |
| snow particle size of semi surface | 1km      | N/A      |
| surface snow particle size         | 250m/1km | N/A      |
| snow/ice surface albedo            | 1km      | N/A      |
| snow impurity                      | 250m/1km | N/A      |
| ice sheet roughness                | 1km      | N/A      |
| ice sheet edge monitor             | 250m     | N/A      |


## 250m ocean regb:22/21/20, 2003.5.26

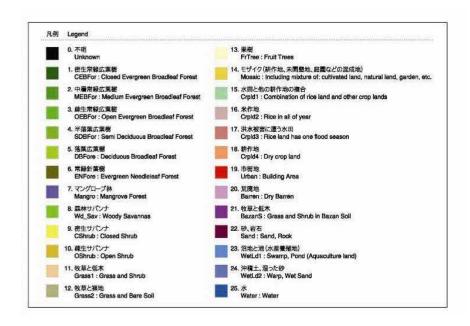


#### 3. Examples of expected GCOM-C product

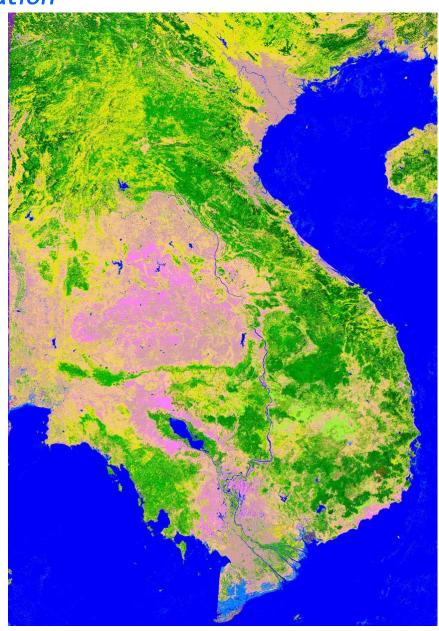
#### - 3.4 VNR 250m land and coastal observation

250m Ocean color chlorophyll-a and NDVI simulated using GLI 250m channels



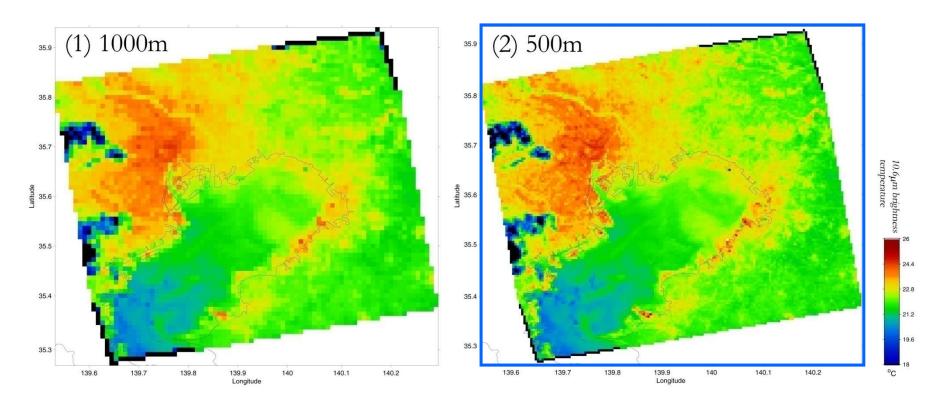

(a) GLI 1km Osaka Bay (1 Oct. 2003, CHL by LCI) (b) GLI 250m Osaka Bay (1 Oct. 2003, CHL by LCI)

SGLI 250m resolution will enable to detect more fine structure in the coastal area such as river outflow, regional blooms, and small current.


#### 3. Examples of expected GCOM-C product

- 3.3 VNR 250m land cover classification

• SGLI's 250m channels (11CHs from 380nm to 1640nm) and once/2-day observation and can improve the land cover classification.




Classification to 25 class (IGBP: International Geosphere-Biosphere Program) using GLI 39 scenes (2003/04~2003/10) (provided by Dr. Nguyen Dinh Duong, VAST(Vietnamese Academy of Science and Technology)



#### 3. Examples of expected GCOM-C product

- 3.5 Thermal infrared 500m land and coastal observation



- The 500m and 1000m spatial resolution thermal infrared images are simulated using ASTER data (original resolution is 90m) (Tokyo Bay in the night on August 4, 2003).
- SGLI 500m-resolution thermal infrared channels will enable detection of fine structures such as land and coastal surface temperature influenced by the city and the river flows.

## Recent status of GCOM-W1

#### Project status

- GCOM-W1 was approved to move to development phase (by SAC on August 8, 2007).
- PDR was finished in June, 2008
- AMSR2 CDR1 was finished in July, 2008.
- deltaCDR was finished on November 2008.
- Current target launch date is Fall, 2011.
- Delay of ADM (Honeywell): 3 months
- Schedule margin: 3 months

# Recent status of GCOM-C1

- GCOM-C1 is under phase B.
- GCOM-C1 was approved to go to a project within JAXA on July, 2008.
- Next step : phase C

# International Cooperation

- Discussions on the cooperation with NPOESS is underway with NOAA
- JAXA is proposing a joint science activity with NASA
- Provision of a scatterometer on GCOM-W2 is under discussion with JPL and NOAA

# Joint Science Team

- Joint Research & Operational Users Working Group (ROUWG) was established.
- First meeting was held on Apr.20,2009 in Tokyo.
- Next meeting will be held in Washington DC on August 2009.

# GCOM User Groups

- GCOM Advisory Committee
- User requirements from both research & operation
- Within JAXA or outside JAXA?
- GCOM-W sub-committee (T. Oki)
- GCOM-C sub-committee (Y. Honda)
- User I/F subgroup (K. Cho)
- GCOM-W science team (+PIs)
- GCOM-C science team (+PIs)

# Basic Law on Space

- Basic Law on Space has passed the Parliament last June
- Strategic Headquarters has been established (Minister level)
- All the space activities will go under the Cabinet Office
- Restructuring of JAXA
- Increased budget?