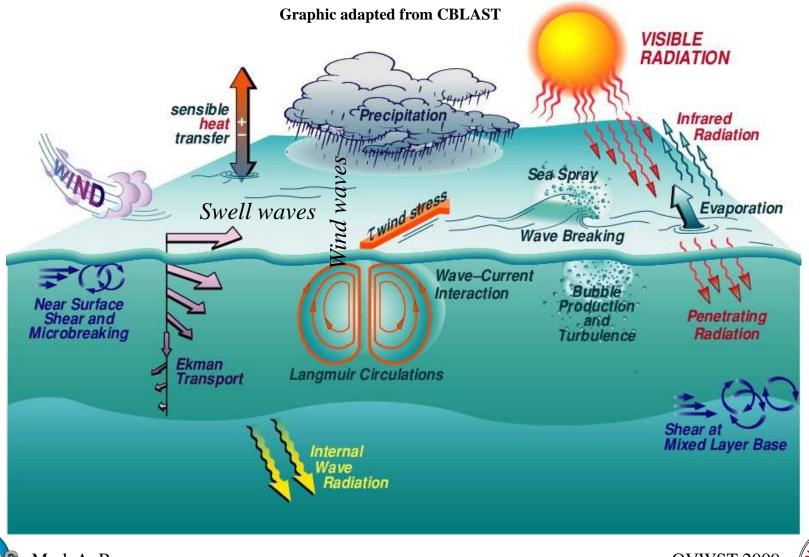


An Example of Wind Observing System Change Influencing the Climate Record

Mark A. Bourassa

With contributions from Paul Hughes and Ryan Maue

Center for Ocean-Atmospheric Prediction Studies & Department of Meteorology The Florida State University Tallahassee, FL32306-2840 USA


Goal & Issues

- Interest: How big are biases in fluxes associated with common assumptions?
 - On what time scales will these biases seriously alter assumptions
- Goal: Estimate the change in Pacific Ocean latent heat fluxes (LHF) due to the change from ship winds to satellite winds assuming they are treated in the same manner
 - For NWP assimilation, both types of winds are treated as earth relative
 - I will focus on the difference due to waves (swell and wind waves).
- Goal: Assess the influence of synoptic or finer scale variability on LHF
 - That is, differences from fluxes based on monthly averaged inputs
 - Wave-related variability is ignored in this part of the study

Many Air/Sea Interaction Processes - Most are strongly influenced by stress -

Mark A. Bourassa

Caveats

- Wave portion of analysis is based on theory observations and not sufficient
- The one thing flux modeler agree on is that they disagree on how to model wave influence
 - There is a wide range of proposed mechanisms for how waves modify surface fluxes.
- Flux models used to study waves
 - Model used herein is Bourassa (2006):
 - Bourassa, M. A., 2006, Satellite-based observations of surface turbulent stress during severe weather, Atmosphere Ocean Interactions, Vol. 2., ed., W. Perrie, Wessex Institute of Technology Press, Southampton, UK, 35 52 pp.
 - Moisture roughness length based on surface renewal theory: Clayson-Fairall-Curry (1996) model.

Drag Coefficient vs. Wind Speed

- Preliminary data form the SWS2 (Severe Wind Storms 2) experiment.
 - The drag coefficients for high wind speeds are large and plentiful.
 - The atypically large drag coefficients are associated with rising seas
- Many models underestimate these fluxes.
- Spread is much bigger than expected from observational errors

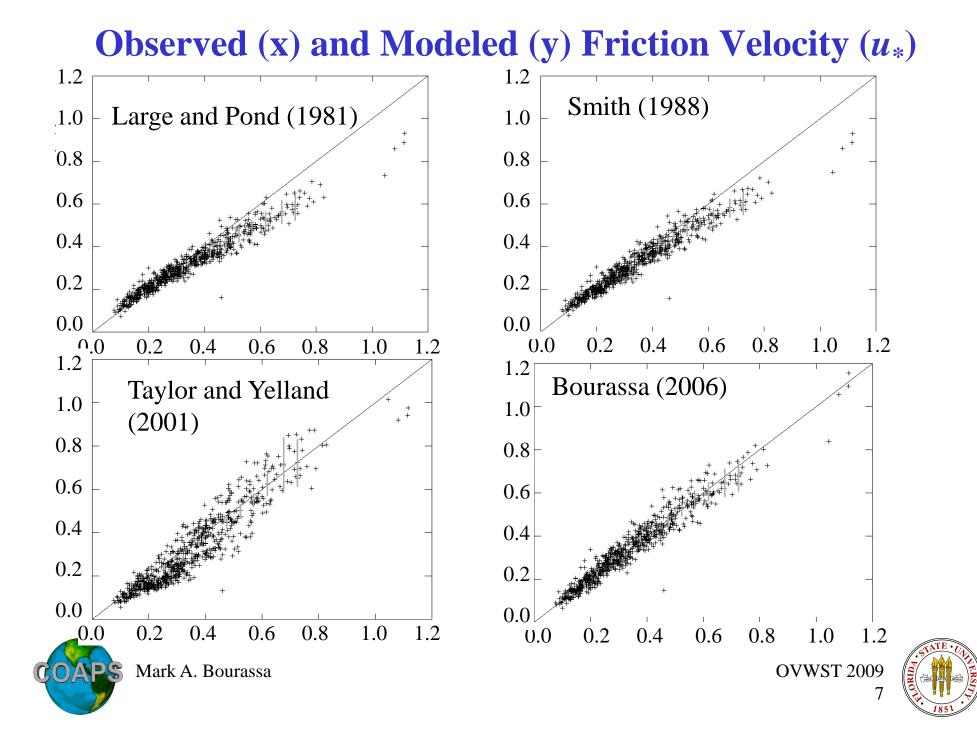
How Do Waves Enter The Picture?

• The surface turbulent stress and LHF are usually parameterized as

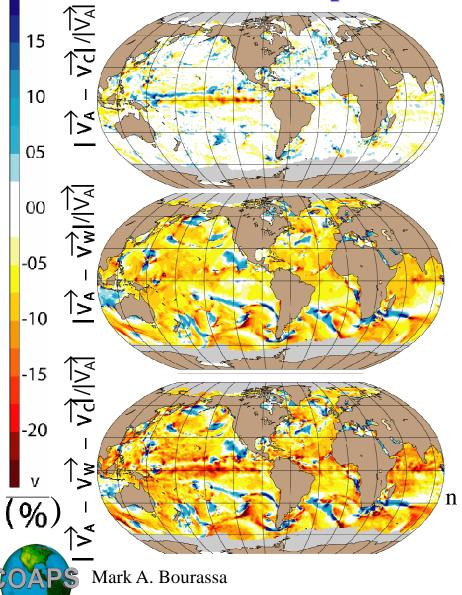
$$\tau = \rho C_D U_{10}^2 \qquad \qquad L = \rho L_v C_E (q_{10} - q_{\rm sfc}) U_{10}$$

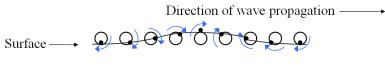
• This form can be more accurately written as

$$\boldsymbol{\tau} = \rho C_{D} \left| \mathbf{U}_{10} \right| \mathbf{U}_{10} \qquad \qquad \boldsymbol{L} = \boldsymbol{\rho} L_{v} C_{E} \left(\boldsymbol{q}_{10} - \boldsymbol{q}_{\text{sfc}} \right) \left| \mathbf{U}_{10} \right|$$


• It can be further improved in terms of surface relative wind vectors:

$$\boldsymbol{\tau} = \rho C_{D} \left| \mathbf{U}_{10} - \mathbf{U}_{sfc} \right| \left(\mathbf{U}_{10} - \mathbf{U}_{sfc} \right) \qquad L = \rho L_{v} C_{E} \left(q_{10} - q_{sfc} \right) \left| \mathbf{U}_{10} - \mathbf{U}_{sfc} \right|$$


- Does a scatterometer respond to \mathbf{U}_{10} or to $\mathbf{U}_{10} \mathbf{U}_{sfc}$?
 - *Cornillon and Park* (2001, *GRL*), *Kelly et al.* (2001, *GRL*), and *Chelton et al.* (2004, *Science*) showed that scatterometer winds were relative to surface currents.
 - *Bentamy et al.* (2001, *JTech*) indicate there is also a dependence on wave characteristics.
 - Bourassa (2006, WIT Press) showed that wave dependency can be parameterized as a change in U_{sfc} .

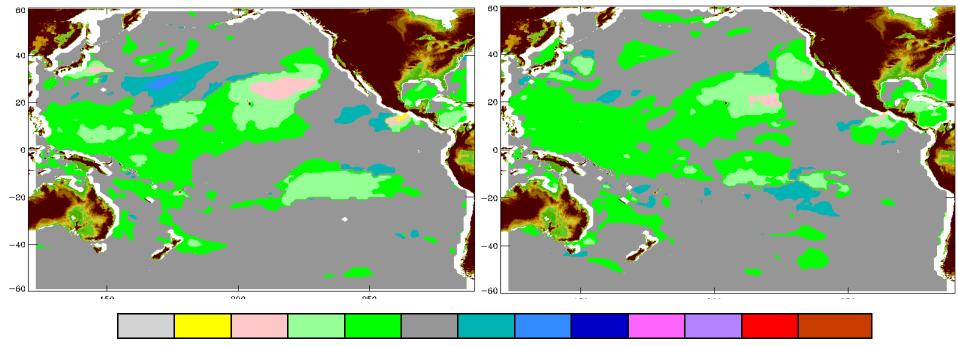


Percentage Change in Surface Relative Winds Example for a 00Z Comparison

20

- The percentage change in surface relative winds is roughly proportional to the change in energy fluxes.
- The percentage change squared is roughly proportional to changes in stress.
- The drag coefficient also changes by about half this percentage.

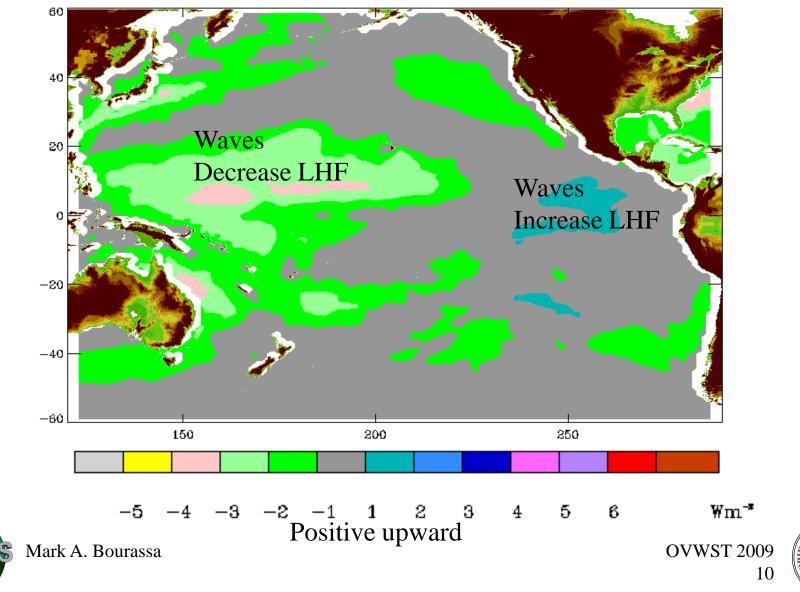
$$U_{\rm orb} = \pi H_{\rm s} / T_{\rm p}$$

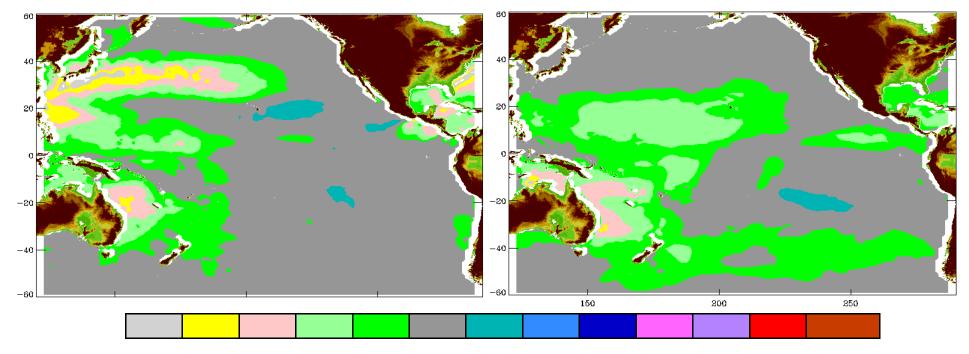

Wind –

Decreased Vertical Shear Increased Vertical Shear From *Kara et al.* (2007, *GRL*)

Wave Induced Changes in LHF

-10 -8 -6 -4 -2 2 4 6 8 10 12 Wm*


- Examples from snapshots (6 hourly time steps)
- Input data:
 - WaveWatch3 (WW3) winds and waves
 - ECWMF temperatures and humidities


Mark A. Bourassa

Example of Results Change in LHF Due to Waves: March 1999

Monthly Averaged Changes in LHF: Two Examples

-10 -8 -6 -4 -2 2 4 6 8 10 12 Wm^{-*}

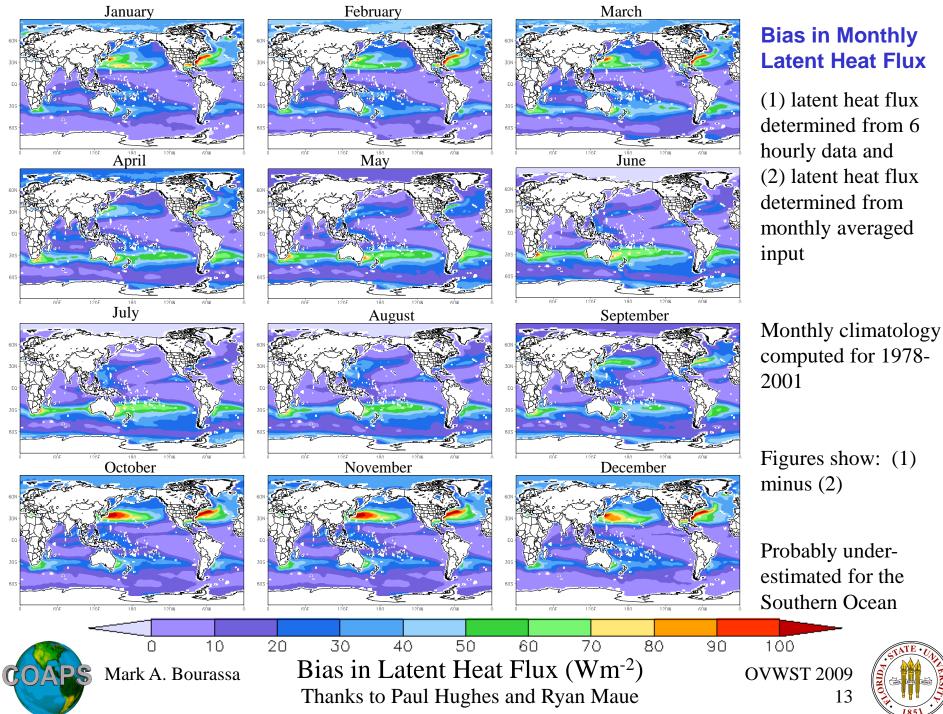
- January 2003 (left) and June 1999 (right)
- One persistent feature is a reduction of heat transfer from the western Pacific warm pool to the atmosphere
- The roughly 5Wm⁻² across basin difference is important for studies of decadal
 variability, and possibly for ENSO

Mark A. Bourassa

Submonthly Contribution to Average LHF

• *L* is determined through a bulk formula.

 $L \approx \overline{\rho} L_v C_E \overline{U} (\overline{q}_{sfc} - \overline{q})$


- Where the overbar indicates a monthly average
- There is considerable controversy about that accuracy of this averaging
- A more accurate approach is to calculate the flux at each time step then average these fluxes: $L \approx \rho L_v C_E U(q_{sfc} q)$
- If we apply Reynolds averaging this equation becomes

$$L = \overline{\rho}L_{v} \overline{\left(C_{E} + C_{E}'\right)\left(U + U'\right)\left(q_{sfc} - q_{sfc}' - q + q'\right)}$$

- If we assume density variations are not important, this equation becomes $L = \overline{\rho} L_v \overline{C_E} \overline{U}(\overline{q_{sfc}} - \overline{q}) + \overline{\rho} L_v \left(\overline{C_E} \overline{U'(q' - q'_{sfc})} + \overline{U} \overline{C'_E(q' - q'_{sfc})} + \overline{(q' - q'_{sfc})} \overline{C'_E U'}\right)$
- Following examples of monthly biases are based on ECMWF reanalysis.
 - Plots bias from using monthly averaged flux input data
 - They do not include wave information

Summary

- Synoptic scale variability in regional latent heat fluxes and flux related variables can be large (>50 Wm⁻² in some regions).
 - Particularly down wind of continents and by western boundary currents.
 - Implies heat fluxes in the Southern Ocean will be underestimated
- In the tropics, sub-monthly variability ignoring waves can exceed 20Wm⁻²; however, it is typically <10 Wm⁻².
- Monthly averaged tropical **wave related** variability is more wide spread:
 - Tends to reduce LHF by roughly 5Wm⁻² in the Western tropical Pacific Ocean
 - Slightly increases LHF in the Eastern tropical Pacific Ocean
 - Could be of interest on ENSO time scales and longer.
- Similar magnitude and spatial distribution to what some people call the global warming signal.

An Example of Wind Observing System Change Influencing the Climate Record

Mark A. Bourassa

With contributions from Paul Hughes and Ryan Maue

Center for Ocean-Atmospheric Prediction Studies & Department of Meteorology The Florida State University Tallahassee, FL32306-2840 USA

