

NWP SAF

Product verification

Ad Stoffelen
Marcos Portabella (CSIC)
Anton Verhoef
Jeroen Verspeek
Jur Vogelzang
Maria Belmonte

scat@knmi.nl

OVWST, 18-20/05/'09

Quality Guidance

- Several products exist; how to guide our users?
- How to trade off processing options?
- Two main issues:
 - Sampling; not all sets have the same QC / coverage
 - Representativeness error, or, how smooth can an application accept the product to be
- Elaborated 2 tests for product comparison:
 - ➤ Dual product collocation with a representative set of buoy data (kindly provided by ECMWF), or NWP data
 - Spectral analysis (discussed at last OVWST with Ernesto)

Buoy verification

SeaWinds 25-km product	# wind vectors	speed bias	stdev u	stdev v
NOAA product, including outer swath	3845	0.25	2.54	2.51
NOAA product, no outer swath data	3276	0.20	2.47	2.18
OSI SAF, no outer swath data	3061	-0.48	1.79	1.88
NOAA product, collocated OSI SAF	2954	0.15	2.19	1.99
OSI SAF, collocated with NOAA product	2954	-0.49	1.76	1.83

- Outer swath winds appear degraded in NOAA product
- > OSI SAF winds verify better with buoys than NOAA does (in RMS)
- OSI SAF wind is biased low
- > OSI SAF collocation much helps NOAA wind SD and bias (rain)
- > NOAA QC has modest impact on OSI SAF product

Buoy verification

SeaWinds 25-km product	# wind vectors	speed bias	stdev u	stdev v
New NOAA, including outer swath	4023	0.09	2.54	2.33
New NOAA, no outer swath data	3342	0.10	2.57	2.24
OSI SAF*, including outer swath data	3756	-0.49	1.84	1.95
OSI SAF*, no outer swath data	3033	-0.46	1.85	1.93
OSI SAF, collocated with OSI SAF*	2926	-0.48	1.78	1.88
OSI SAF*, collocated with OSI SAF	2926	-0.48	1.78	1.87

- > New NOAA product less QC and higher wind SD, bias slightly reduced
- > OSI SAF wind is slightly degraded on basis of new NOAA, due to QC
- > Outer swath similar quality as inner swath, due to 4 noise values

Buoy verification

OSI SAF 100-km product	# wind vectors	speed bias	stdev u	stdev v
no MSS used	3156	-0.21	2.16	2.06
MSS used	3155	-0.25	2.03	2.06
MSS*, no outer swath data	3163	-0.23	2.11	2.07
MSS*, outer swath data	3925	-0.25	2.09	2.12
MSS collocated with MSS*	3038	-0.25	2.01	2.04
MSS* collocated with MSS	3038	-0.25	2.04	2.03

- ➤ MSS beneficial at 100 km (nadir)
- > OSI SAF wind is slightly degraded on basis of new NOAA, due to QC
- > Outer swath similar quality to inner swath, due to 4 noise values

Bias due to σ⁰ averaging

- 100-km product increases low speeds
- At coarser resolutions speeds should be lower instead?

Bias due to σ⁰ averaging

- σ^0 distribution is steep for low values; a low value at a 25-km WVC most likely has a neighbour WVC σ^0 value that is higher; this removes low (extreme) values when averaging to 100 km
- ➤ The wind vector distribution is flat for low values; a low 25-km WVC most likely has similarly low WVC neighbour amplitudes at varying direction; more low wind vector amplitudes are expected at 100 km
- ➤ 25-km GMF will not provide good 100-km winds!
- \triangleright We verified that noisier (>Kp) σ^0 data indeed provide speed bias as well

FFT detrending methods

- Over a few 1000 km the wind vector generally changes
- FFTs assume infinite periodic continuation of the series
- A step function between the last and first point of the series adds smallscale FFT noise
- This is aliasing of variance on scales beyond the FFT domain on the tail's spectrum

Detrending SAF

- A trend FFTs to k⁻²
- Only first difference and matching first and last point by linear transform remove the largescale aliasing on the FFT tail

u ASCAT OSISAF u ASCAT Box avg ASCAT OSISAF v ASCAT Box avg

SAF

Box AWDP@12.5

- Box averaging maintains more tail variance
- No apparent noise floor
- Buoy verification confirms this; see later presentation
- Still u bump, but at lower wavelength (?)
- $k^{-1.8}$, pretty close to -1.67 for 3D turbulence Nastrom and Gage 1987

OVWST, 18-20/05/'09

Conclusions

- Dual product collocation with buoys reveals clear relative quality characterictics
 - The SDP@25km product verifies better than NOAA
 - SDP@25km is about 0.4 m/s lower than ASCAT (0.5 m/s w.r.t. buoys)
 - NOAA rejects fewer WVCs than SDP, but accepted points do not verify well
 - SDP winds based on the new NOAA SeaWinds BUFR verify slightly worse, but provide good quality outer swath winds with SDP
 - NOAA outer swath winds are clearly degraded
 - MSS in SDP@100km OSI SAF notably reduces the wind component RMS with respect to buoy data
 - Wind-speed dependent bias correction for the products is ongoing
- FFT tool is applied to further quantify product characteristics
 - ASCAT contains more small-scale variance than SeaWinds products
 - ASCAT winds based on 12.5-km Box-averaged σ^{0} product contains most variance
 - SeaWinds products show noise floor
 - ASCAT winds show bump in u component, not explained entirely by Hamming filter
- Work in progress

NWP SAF

www.knmi.nl/scatterometer

OVWST, 18-20/05/'09

Buoy and NWP verification NWP SAF

- ASCAT 25 compares best to buoys;
 ASCAT 25 compares best to ECMWF as well
- SeaWinds 25 is slightly noisier than ASCAT 25;
 SeaWinds 100
 compares much better to ECMWF winds than SeaWinds 25
- Low-res products good for global NWP; Hi-res for ocean applications and nowcasting

ASC	ASCAT 25 Se		nds 25	SeaWinds 100		
SD u [m/s]	SD v [m/s]	SD u [m/s]	SD v [m/s]	SD u [m/s]	SD v [m/s]	
1.76	1.79	1.84	1.83	2.19	2.00	

NWP SAF

Experimental 12.5-km product

See yesterday's talk

QuikSCAT vs ECMWF

ASCAT vs ECMWF

