Comparison of QuikSCAT and ASCAT Spatial Variability

Michael J. Caruso

CSTARS/RSMAS/University of Miami
11811 SW 168th St
Miami, FL 33177
Overview

• Motivation
• Methodology
• 25 km winds
• 12.5 km winds
• Summary
Motivation

• Typical comparisons involve colocated data from in situ measurements, atmospheric models or between satellites.

• Freilich and Chelton (1986) pointed out the importance of intermediate spatial scale winds.

• Are the spectral densities similar?
Methodology

- Sort winds by region
- Apply standard QC flags
- Discard along-track data with any gaps present
- Compute power spectrum
- Compute average power at each spectral bin
Regions
Region I 45°– 25°S 25 km
Region II 25°– 5°S 25 km
Region III 5°– 25°N 25 km
Region IV 25°– 45°N 25 km
Mid-Latitude 12.5 vs 25 km

QS

AS

CSTARS
Tropics 12.5 vs 25 km

QS

AS
Summary April 2009

<table>
<thead>
<tr>
<th>Data set</th>
<th>Region</th>
<th>Zonal exponent</th>
<th>Meridional exponent</th>
<th>Mean ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>QS 25.0 km</td>
<td>I</td>
<td>-2.09 ± 0.01</td>
<td>-2.12 ± 0.01</td>
<td>1.97</td>
</tr>
<tr>
<td>AS 25.0 km</td>
<td>I</td>
<td>-2.12 ± 0.01</td>
<td>-2.14 ± 0.01</td>
<td>1.77</td>
</tr>
<tr>
<td>QS 12.5 km</td>
<td>I</td>
<td>-2.04 ± 0.02</td>
<td>-1.98 ± 0.02</td>
<td>2.01</td>
</tr>
<tr>
<td>AS 12.5 km</td>
<td>I</td>
<td>-2.06 ± 0.02</td>
<td>-1.94 ± 0.02</td>
<td>1.67</td>
</tr>
<tr>
<td>QS 25.0 km</td>
<td>II</td>
<td>-1.97 ± 0.02</td>
<td>-2.00 ± 0.02</td>
<td>0.90</td>
</tr>
<tr>
<td>QS 12.5 km</td>
<td>II</td>
<td>-1.71 ± 0.02</td>
<td>-1.81 ± 0.02</td>
<td>0.73</td>
</tr>
<tr>
<td>AS 25.0 km</td>
<td>II</td>
<td>-2.19 ± 0.01</td>
<td>-2.01 ± 0.01</td>
<td>0.91</td>
</tr>
<tr>
<td>AS 12.5 km</td>
<td>II</td>
<td>-1.93 ± 0.01</td>
<td>-1.64 ± 0.02</td>
<td>0.74</td>
</tr>
<tr>
<td>QS 25.0 km</td>
<td>III</td>
<td>-1.94 ± 0.01</td>
<td>-2.06 ± 0.02</td>
<td>1.12</td>
</tr>
<tr>
<td>QS 12.5 km</td>
<td>III</td>
<td>-1.73 ± 0.02</td>
<td>-1.89 ± 0.02</td>
<td>0.92</td>
</tr>
<tr>
<td>AS 25.0 km</td>
<td>III</td>
<td>-2.15 ± 0.01</td>
<td>-2.11 ± 0.02</td>
<td>0.90</td>
</tr>
<tr>
<td>AS 12.5 km</td>
<td>III</td>
<td>-1.94 ± 0.01</td>
<td>-1.75 ± 0.02</td>
<td>0.77</td>
</tr>
<tr>
<td>QS 25.0 km</td>
<td>IV</td>
<td>-2.09 ± 0.01</td>
<td>-2.16 ± 0.01</td>
<td>1.91</td>
</tr>
<tr>
<td>QS 12.5 km</td>
<td>IV</td>
<td>-2.09 ± 0.02</td>
<td>-2.08 ± 0.02</td>
<td>1.79</td>
</tr>
<tr>
<td>AS 25.0 km</td>
<td>IV</td>
<td>-2.15 ± 0.01</td>
<td>-2.19 ± 0.01</td>
<td>1.89</td>
</tr>
<tr>
<td>AS 12.5 km</td>
<td>IV</td>
<td>-2.12 ± 0.01</td>
<td>-1.99 ± 0.01</td>
<td>1.67</td>
</tr>
</tbody>
</table>
Summary

• 25 km
 – Good agreement in spectral density at mid-latitudes (regions I&IV)
 – Larger differences in the tropics (regions II&III)
• 12.5 km
 – Similar results in mid-latitudes
 – QuikSCAT had slightly more energy at higher wavenumbers
 – ASCAT meridional winds had more energy at wavelengths above 50 km and less energy below 50 km
• Relative standard deviations were typically higher in the tropics and wavelengths below 50 km
Future work

• Cross-track spectrum analysis
• Temporal variability
• SAR winds
• Investigate tropical discrepancies
Thank you.