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Many Air/Sea Interaction Processes
- Most are strongly influenced by wind (or stress) -
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Graphic adapted from CBLAST
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Coupling Fluxes at the Air/Sea Interface
• How accurately do we have to know the various fluxes through the air sea 

interface?

• Stress – vertical transport of horizontal momentum (Nm-2)

• Magnitude proportional to wind speed squared or cubed

• Latent heat – heat transferred through phase change from water to water 
vapor (Js-1m-2 =  Wm-2)

• Proportional to wind speed & air/sea moisture difference

• Sensible heat – heat transferred without phase change from water to air 
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• Sensible heat – heat transferred without phase change from water to air 
(Js-1m-2 =  Wm-2)

• Proportional to wind speed & air/sea temperature difference

• Evaporation – proportional to latent heat flux  (kgs-1m-2)

• Proportional to wind speed & air/sea moisture difference

• Precipitation – rain of snow falling and reaching the surface

• The curl of the stress is very important for vertical motion and deep 
circulation.



Flux and Wind Accuracies 
Desired for Various Applications
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Observational Errors

• We are primarily interested in how biases in observations of wind speed (w) 

• sea surface temperature (SST), near surface air temperature (Tair), and 
near surface humidity (q) translate to biases in calculated fluxes.

• Errors can be described as composed of 

• A bias (this bias could be a function of environmental conditions),

• Random uncertainty, and

• More complicated systematic errors
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near surface humidity (qair) translate to biases in calculated fluxes.

• Turbulent fluxes: sensible heat (H), latent heat (L), and stress (τ).

• In general, the bias in one of these observations can be related to the bias in a 
flux through a Sensitivity (S).

• Symmetrically distributed random errors in data that are used linearly will 
cause only small error if there is a large enough sample.

• Non-linear processes can result in biases due to random errors.



Biases – For Specific Conditions

• The maximum allowable bias in an observation (e.g., |∆w|) can be estimated 

• Example: How much does a bias in speed (∆w) contribute to a bias in 
the latent heat flux (∆L)?

• ∆L = SL,w ∆w

• If SL,w is very large, then even a small bias in w can result in a 
large bias in L.

• If the sensitivity is very small, then the calculated variable is 
insensitive to errors in the observation.

Mark A. Bourassa Scatterometry and    .
Climate Workshop  6

• The maximum allowable bias in an observation (e.g., |∆w|) can be estimated 
from the maximum specified error in the calculated variable (e.g., |∆L|max), 
and the sensitivity (e.g., SL,w)

• |∆w|max = |∆L|max / |SL,w|

• The sensitivity is the partial derivative of the output quantity (e.g., the flux) 
with respect to the input observation (e.g., wind speed).

• SL,w = ∂L/∂w



Example: Sensitivity of Sensible Heat Flux to Errors 
in 10m Wind Speed (∂∂∂∂H/∂∂∂∂w)
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SST –Air Temperature (Celsius)



Example: Sensitivity of Latent Heat Flux to Errors in 
Wind Speed: ∂∂∂∂(E/∆∆∆∆q)/∂∂∂∂w

• Air/sea 
humidity 
differences are 
also important.

• A third 
dimension is 
awkward to 
work with. 
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work with. 
Therefore 
sensitivity, per 
kg/kg is given.

• Humidity 
differences are 
typically on the 
order of 1g/kg.

SST – Air Temperature (Celsius)



Error Limits for Observation Errors
• For this talk, we will ignore random errors, assuming that they will be small 

given enough samples.

• This is a common assumption, but will not be true for all applications!

• The maximum allowable bias in an observation (e.g., |∆w|) can be estimated 
from the maximum specified error in the calculated variable (e.g., |∆E|), and 
the sensitivity (e.g., SE,w)

• |∆w|max = |∆E|max / |SE,w|
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Example: How Much Bias in Wind Speed Can We 
Tolerate in Calculated Sensible Heat Flux

• We can be 
relatively 
sloppy.

Assume a bias in 
SHF of <1.25 
Wm-2 is OK.
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Max
Bias

SST – Air Temperature (Celsius)

Wm-2 is OK.

• We must be 
relatively 
accurate.
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Example: How Much Bias in Wind Speed Can We 
Tolerate in Calculated LHF

• Fortunately, 
high winds are 
usually 
associated with 
unstable 
stratification 
(SST –Tair > 0).

• In strong 
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• In strong 
storms, we will 
not meet our 
accuracy 
requirement.

0.2 m/s (climate)

SST – Air Temperature (Celsius)



Conclusions
• Speed constraints

• For average open ocean conditions, accuracy requirements for turbulent 
heat fluxes are easily achieved: ~1ms-1 bias is OK.

• Might be OK for tropics for annual applications

• Insufficient for mid-latitudes

• For harsh mid-latitude conditions, speed biases of ≤0.2ms-1 are needed

• For multi-decadal applications slightly finer accuracy is needed.

•
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• Direction

• While direction is very important for physical processes, the bias 
constraints for direction (or vector component error) are not known.

• Slightly finer accuracy might be needed for Sverdrup flow?

• There are applications that are non-linearly dependent on wind speed (or 
stress) for which the impacts of random errors should be investigated.

• Sampling of the synoptic and diurnal variability could also cause biases.



Surface Turbulent Fluxes 
and Scatterometry

Mark A. Bourassa 

With help from Ralph Milliff and others
Center for Ocean-Atmospheric Prediction Studies & 

Department of Meteorology, 

Mark A. Bourassa Scatterometry and    .
Climate Workshop  13

The Florida State University, USA



Suggested Measurement Accuracy
For Research Vessels

• I will assume that 
a 5Wm-2 is the 
limit for biases in 
radiative fluxes. 

• Then 5Wm-2 is 
the limit for 
biases in surface 
turbulent heat 
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turbulent heat 
fluxes.



Curl of the Stress
NCEPR2 IFREMER

FSU3 NOCv1.1
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• Ship tracks are apparent in many products, as are TAO buoys

FSU3 NOCv1.1



Standard Deviation of the Curl of the Stress

NCEPR2 IFREMER

FSU3 NOCv1.1
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• Ship tracks are apparent in many products, as are TAO buoys

FSU3 NOCv1.1



Drag Coefficient vs. Wind Speed

• Preliminary data form the 
SWS2 (Severe Wind Storms 
2) experiment.

• The drag coefficients 
for high wind speeds are 
large and plentiful.

• The atypically large 
drag coefficients are 
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drag coefficients are 
associated with rising 
seas

• Many models underestimate 
these fluxes.

• Spread is much bigger than 
expected from observational 
errors
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How Do Waves Enter The Picture?
• The surface turbulent stress and LHF are usually parameterized as

L = ρ Lv CE (q10 – qsfc) U10

• This form can be more accurately written as

L = ρ Lv CE (q10 – qsfc) |U10|

• It can be further improved in terms of surface relative wind vectors:

L = ρ Lv CE (q10 – qsfc) |U10 – Usfc|
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• Does a scatterometer respond to U10 or to U10 − Usfc?

• Cornillon and Park (2001, GRL), Kelly et al. (2001, GRL), and Chelton et al.
(2004, Science)  showed that scatterometer winds were relative to surface 
currents.

• Bentamy et al. (2001, JTech) indicate there is also a dependence on wave 
characteristics.

• Bourassa (2006, WIT Press) showed that wave dependency can be parameterized 
as a change in Usfc.



Observed (x) and Modeled (y) Friction Velocity (u*)

Large and Pond (1981) Smith (1988)
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Taylor and Yelland 
(2001)

Bourassa (2006)
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Ocean’s TKE Based on Observed Surface Fluxes

Eddy Correlation Inertial Dissipation
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Bulk Methods

Calculations by 
Derrick Weitlich

Clayson & Kantha
model

Bulk Method


