

Developing Accuracy Constraints for Climate Quality Observations

Mark A. Bourassa

With help from Ralph Milliff and others

Center for Ocean-Atmospheric Prediction Studies & Department of Meteorology, The Florida State University, USA

Many Air/Sea Interaction Processes - Most are strongly influenced by wind (or stress) -

Mark A. Bourassa

Scatterometry and Climate Workshop 2

Coupling Fluxes at the Air/Sea Interface

- How accurately do we have to know the various fluxes through the air sea interface?
 - Stress vertical transport of horizontal momentum (Nm⁻²)
 - Magnitude proportional to wind speed squared or cubed
 - Latent heat heat transferred through phase change from water to water vapor (Js⁻¹m⁻² = Wm⁻²)
 - Proportional to wind speed & air/sea moisture difference
 - Sensible heat heat transferred without phase change from water to air $(Js^{-1}m^{-2} = Wm^{-2})$
 - Proportional to wind speed & air/sea temperature difference
 - Evaporation proportional to latent heat flux $(kgs^{-1}m^{-2})$
 - Proportional to wind speed & air/sea moisture difference
 - Precipitation rain of snow falling and reaching the surface
- The curl of the stress is very important for vertical motion and deep circulation.

Flux and Wind Accuracies Desired for Various Applications

Observational Errors

- Errors can be described as composed of
 - A bias (this bias could be a function of environmental conditions),
 - Random uncertainty, and
 - More complicated systematic errors
- We are primarily interested in how biases in observations of wind speed (w)
 - sea surface temperature (SST), near surface air temperature (T_{air}) , and near surface humidity (q_{air}) translate to biases in calculated fluxes.
 - Turbulent fluxes: sensible heat (H), latent heat (L), and stress (τ) .
- In general, the bias in one of these observations can be related to the bias in a flux through a Sensitivity (S).
- Symmetrically distributed random errors in data that are used linearly will cause only small error if there is a large enough sample.
 - Non-linear processes can result in biases due to random errors.

Biases – For Specific Conditions

- Example: How much does a bias in speed (Δw) contribute to a bias in the latent heat flux (ΔL)?
 - $\Delta L = S_{L,w} \Delta w$
 - If S_{L,w} is very large, then even a small bias in w can result in a large bias in L.
 - If the sensitivity is very small, then the calculated variable is insensitive to errors in the observation.
- The maximum allowable bias in an observation (e.g., $|\Delta w|$) can be estimated from the maximum specified error in the calculated variable (e.g., $|\Delta L|_{max}$), and the sensitivity (e.g., $S_{L,w}$)
 - $|\Delta w|_{max} = |\Delta L|_{max} / |S_{L,w}|$
- The sensitivity is the partial derivative of the output quantity (e.g., the flux) with respect to the input observation (e.g., wind speed).

•
$$S_{L,w} = \partial L / \partial w$$

Example: Sensitivity of Latent Heat Flux to Errors in Wind Speed: ∂(E/∆q)/∂w

Error Limits for Observation Errors

- For this talk, we will ignore random errors, assuming that they will be small given enough samples.
 - This is a common assumption, but will not be true for all applications!
- The maximum allowable bias in an observation (e.g., $|\Delta w|$) can be estimated from the maximum specified error in the calculated variable (e.g., $|\Delta E|$), and the sensitivity (e.g., $S_{E,w}$)
 - $|\Delta w|_{max} = |\Delta E|_{max} / |S_{E,w}|$

STATE - CALL RESIDENCE

Conclusions

• Speed constraints

- For *average* open ocean conditions, accuracy requirements for turbulent heat fluxes are easily achieved: ~1ms⁻¹ bias is OK.
 - Might be OK for tropics for annual applications
 - Insufficient for mid-latitudes
- For harsh mid-latitude conditions, speed biases of $\leq 0.2 \text{ms}^{-1}$ are needed
- For multi-decadal applications slightly finer accuracy is needed.
- Direction
 - While direction is very important for physical processes, the bias constraints for direction (or vector component error) are not known.
 - Slightly finer accuracy might be needed for Sverdrup flow?
- There are applications that are non-linearly dependent on wind speed (or stress) for which the impacts of random errors should be investigated.
- Sampling of the synoptic and diurnal variability could also cause biases.

Mark A. Bourassa

Surface Turbulent Fluxes and Scatterometry

Mark A. Bourassa

With help from Ralph Milliff and others

Center for Ocean-Atmospheric Prediction Studies & Department of Meteorology, The Florida State University, USA

Suggested Measurement Accuracy For Research Vessels

Table 1: Accuracy, precision and random error targets for SAMOS. Accuracy estimates are currently based on time scales for climate studies (i.e., $\pm 10 \text{ W/m}^2$ for Q_{net} on monthly to seasonal timescales). Several targets are still to be determined.

	Accuracy of Mean	Data	Random Error
Parameter	(bias)	Precision	(uncertainty)
Latitude and	0.001°	0.001°	
Longitude			
Heading	2°	0.1°	
Course over	2°	0.1°	
ground			
Speed over ground	Larger of 2% or 0.2 m/s	0.1 m/s	Greater of 10% or 0.5 m/s
Speed over water	Larger of 2% or 0.2 m/s	0.1 m/s	Greater of 10% or 0.5 m/s
Wind direction	3°	1°	
Wind speed	Larger of 2% or 0.2 m/s	0.1 m/s	Greater of 10% or 0.5 m/s
Atmospheric	0.1 hPa (mb)	0.01 hPa	
Pressure		(mb)	
Air Temperature	0.2 °C	0.05 °C	
Dewpoint	0.2 °C	0.1 °C	
Temperature			
Wet-bulb	0.2 °C	0.1 °C	
Temperature			
Relative Humidity	2%	0.5 %	
Specific Humidity	0.3 g/kg	0.1 g/kg	
Precipitation	~0.4 mm/day	0.25 mm	
Radiation (SW in,	5 W/m^2	1 W/m^2	
LW in)			
Sea Temperature	0.1 °C	0.05 °C	
Salinity			
Surface Current	0.1 m/s	0.05 m/s	

I will assume that a 5Wm⁻² is the limit for biases in radiative fluxes.

• Then 5Wm⁻² is the limit for biases in surface turbulent heat fluxes.

🧏 Mark A. Bourassa

Curl of the Stress

Standard Deviation of the Curl of the Stress

Drag Coefficient vs. Wind Speed

- Preliminary data form the SWS2 (Severe Wind Storms 2) experiment.
 - The drag coefficients for high wind speeds are large and plentiful.
 - The atypically large drag coefficients are associated with rising seas
- Many models underestimate these fluxes.
- Spread is much bigger than expected from observational errors

Mark A. Bourassa

How Do Waves Enter The Picture?

• The surface turbulent stress and LHF are usually parameterized as

$$\tau = \rho C_D U_{10}^2 \qquad \qquad L = \rho L_v C_E (q_{10} - q_{\rm sfc}) U_{10}$$

• This form can be more accurately written as

$$\boldsymbol{\tau} = \rho C_{D} \left| \mathbf{U}_{10} \right| \mathbf{U}_{10} \qquad \qquad \boldsymbol{L} = \boldsymbol{\rho} L_{v} C_{E} \left(\boldsymbol{q}_{10} - \boldsymbol{q}_{sfc} \right) \left| \mathbf{U}_{10} \right|$$

• It can be further improved in terms of surface relative wind vectors:

$$\boldsymbol{\tau} = \rho C_{D} \left| \mathbf{U}_{10} - \mathbf{U}_{sfc} \right| \left(\mathbf{U}_{10} - \mathbf{U}_{sfc} \right) \qquad L = \rho L_{v} C_{E} \left(q_{10} - q_{sfc} \right) \left| \mathbf{U}_{10} - \mathbf{U}_{sfc} \right|$$

- Does a scatterometer respond to \mathbf{U}_{10} or to $\mathbf{U}_{10} \mathbf{U}_{sfc}$?
 - *Cornillon and Park* (2001, *GRL*), *Kelly et al.* (2001, *GRL*), and *Chelton et al.* (2004, *Science*) showed that scatterometer winds were relative to surface currents.
 - *Bentamy et al.* (2001, *JTech*) indicate there is also a dependence on wave characteristics.
 - *Bourassa* (2006, *WIT Press*) showed that wave dependency can be parameterized as a change in U_{sfc} .

Mark A. Bourassa

Ocean's TKE Based on Observed Surface Fluxes

Scatterometry and Climate Workshop 20

