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Many Air/Sea Interaction Processes
- Most are strongly influenced by wind (or stress) -

Graphic adapted from CBLAST
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Coupling Fluxes at the Air/Sea Interface

* How accurately do we have to know the various fiutkgough the air sea
interface?

* Stress — vertical transport of horizontal momentim®€)
* Magnitude proportional to wind speed squared oedub
* Latent heat — heat transferred through phase cHammewvater to water
vapor (Jsm? = Wm?)
* Proportional to wind speed & air/sea moisture ddfee
* Sensible hee heat transferred without phase change from watair
(Jstm? = Wm?)
* Proportional to wind speed & air/sea temperatuffemince
* Evaporation — proportional to latent heat flux (kgg’)
* Proportional to wind speed & air/sea moisture ddfee
* Precipitation — rain of snow falling and reaching gurface

* The curl of the stress is very important for veaticotion and deep
circulation.
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Flux and Wind Accuracies
Desired for Various Applications
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Observational Errors

* Errors can be described as composed of
* Abias (this bias could be a function of environta¢nonditions),
* Random uncertainty, and
* More complicated systematic errors

* We are primarily interested in how biases in obatowns of wind speed (w)

* sea surface temperature (SST), near surface goetature (T;), and
near surface humidity ;) translate to biases in calculated flu:

* Turbulent fluxes: sensible heat (H), latent hedt dnd stresst|.

* |In general, the bias in one of these observatiandoe related to the bias in a
flux through a Sensitivity (S).

*  Symmetrically distributed random errors in data Hra used linearly will
cause only small error if there is a large enowaghde.

* Non-linear processes can result in biases duentiora errors.
-
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Biases — For Specific Conditions

* Example: How much does a bias in spe&a)(contribute to a bias in
the latent heat fluxj{L)?

° AL=§ , Aw
° IfS, , is very large, then even a small bias in w canlta@sa
large bias in L.

* If the sensitivity is very small, then the calceldwariable is
Insensitive to errors in the observation.

* The maximum allowable bias in an observation (Aw|) can be estimate
from the maximum specified error in the calculatadable (e.g.AL|.,).
and the sensitivity (e.9., )

* 1AWlnax = Bllnax/ |9 wl

* The sensitivity is the partial derivative of thetjput quantity (e.g., the flux)
with respect to the input observation (e.g., wipdesl).

° S ,=0L/ow
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Example: Sensitivity of Sensible Heat Flux to Erros
In 10m Wind Speed §H/ow)
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Example: Sensitivity of Latent Heat Flux to Errorsin
Wind Speed:d(E/Aqg)/ow
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Error Limits for Observation Errors

* For this talk, we will ignore random errors, assagnihat they will be small
given enough samples.
* This is a common assumption, but will not be traredl applications!
* The maximum allowable bias in an observation (Ay|) can be estimated
from the maximum specified error in the calculatadable (e.g.AE|), and
the sensitivity (e.g.,5,)

* 1AWlnax= BEknax/ Sl
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Example: How Much Bias in Wind Speed Can We
Tolerate in Calculated Sensible Heat Flux H--:

* \We can be
relatively

sloppy.

Assume a bias in
SHF of <1.25
Wm2is OK.

Wind Speed (m/s)

* We must be
relatively
accurate.
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Example: How Much Bias in Wind Speed Can We
Tolerate in Calculated LHF '
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Conclusions

Speed constraints

* Foraverage open ocean conditions, accuracy requirements foutent
heat fluxes are easily achieved: ~Irhsas is OK.

* Might be OK for tropics for annual applications
* |nsufficient for mid-latitudes
* For harsh mid-latitude conditions, speed biasefddms! are needed
* For multi-decadal applications slightly finer acacy is needed.
Direction

* While direction is very important for physical pesses, the bias
constraints for direction (or vector component grame not known.

* Slightly finer accuracy might be needed for Svepditaw?

There are applications that are non-linearly depahdn wind speed (or
stress) for which the impacts of random errors khba investigated.

Sampling of the synoptic and diurnal variabilityutmbalso cause biases.
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Suggested Measurement Accuracy
For Research Vessels

Table 1: Accuracy. precision and random error targets for SAMOS. Accuracy estimates are o | .
y estimates are I me th
currently based on time scales for climate studies (e, 210 W/m™ for Que on monthly to seasonal WIIl assume t at

timescales). Several targets are :m].] to be determined. . . a 5Wm2 IS the
Accuracy of Mean Data Random Error o ) .

Parameter (bias) Precision (uncertainty ) ||m|t fOI" b|aseS 18]

Latitude and 0.o01® 0.001° ..

Longitude radiative fluxes.

Heading 2° 0.1°

Course over 2° 0.1° e Then 5sz iS

ground P
Speed over ground  Largerof 2% or 0.2 m/s 0.1 m/s Greater of 10% or 0.5 m/s the “mlt for
S[?_“‘J over water !\.urg_.wr of 2% or 0.2 m/s 0.1 m/s Greater of 10% or 0.5 m/s biases in Surface
Wind direction 3° 1
Wind speed Largerof 2% or 0.2 m/s 0.1 m/s Greater of 10% or 0.5 m/s tu rbUIent hea
Atmospheric (0.1 hPa (mb) 0.01 hPa
Pressure {mb) ﬂuxes.
Adr Temperature 0.2°C 0.05°C
Dewpoint 0.2°C 0.1°C
Temperature
Wet-bulb 02 01
Temperature
Relative Humidity 2% 0.5 %
Spectfic Humidity 0.3 g/kg 0.1 ghkg
Precipitation ~0.4 mm/day 0.25 mm
Radiation (SW 1n, 5 Wim? | W/m®
LW in)
Sea Temperature 0.1eC 0.05°C
Salinity
Surface Current 0.1 m/s (.05 m/s
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Curl of the Stress
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* Ship tracks are apparent in many products, as A€ duoys
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* Ship tracks are apparent in many products, as A€ duoys
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Drag Coefficient vs. Wind Speed
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* Preliminary data form the
SWS2 (Severe Wind Storms
2) experiment.

* The drag coefficients
for high wind speeds are
large and plentiful.

* The atypically large
drag coefficients ar
associated with rising
seas

* Many models underestimate
these fluxes.

* Spread is much bigger than
expected from observational
errors

|
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How Do Waves Enter The Picture?

* The surface turbulent stress and LHF are usually parametaszed

T=pC, U L= pL, Ce (G0~ 0std Uso
* This form can be more accurately written as
1=pC, |U,|U, L =pL, Ce (Gho— st U1l

* It can be further improved in terms of surface relative wind vector
T=pC, |U10 - []g%|(II10 — U.sy%) L= P I—V CE (qu — quC) |U10 _ USfCl

* Does a scatterometer respondtgor toU,,— U;.?

* Cornillonand Park (2001,GRL), Kelly et al. (2001,GRL), andChelton et al.
(2004,<cience) showed that scatterometer winds were relative to surface
currents.

* Bentamy et al. (2001,JTech) indicate there is also a dependence on wave
characteristics.

* Bourassa (2006,WIT Press) showed that wave dependency can be parameterized
as a change ..
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Observed (x) and Modeled (y) Friction Velocity (.)
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Ocean’s TKE Based on Observed Surface Fluxes

Inertial Dissipation
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Calculations by
Derrick Weitlich

Clayson & Kantha
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