The Sensitivity of Air-Sea Gas Transfer to Wind Speed and Stress

Gary A. Wick¹ and Darren L. Jackson²

¹NOAA Earth System Research Laboratory ²CIRES, University of Colorado

With thanks to Jeff Hare, Jim Edson, Wade McGillis, and Chris Fairall

August 19, 2009

• Objectives

- Assess accuracy of gas transfer velocity derived from satellite inputs using physically-based COARE parameterization
- Construct error budget and derive sensitivity to wind speed and other input parameters
- Outline
 - Background
 - Implementation of COARE model with satellite inputs
 - Estimation of uncertainties and wind sensitivity
 - Assessment of predicted velocities with other satellite approaches and direct observations

Net air-sea flux: $F = k\alpha \Delta (pCO_2)$

Transfer velocity: k = F(wind, bubbles, surfactants, wave slope)

Transfer Velocity Methods

- Simple wind speed parameterization
- Physically-based gas transfer models
- Direct relationship to surface roughness and wind stress

Implementation

- NOAA COARE air-sea gas transfer parameterization
 - Micrometeorological approach matching the turbulent and molecular processes on both sides of the interface
 - Incorporates surface renewal concepts
 - Utilizes empirical bubble and wave-breaking enhancement model (Woolf 1997)
 - Applies to multiple gases including CO₂, DMS, and ozone
- Satellite-based inputs
 - Wind speed (Wentz)
 - SST (Reynolds)
 - Near-surface air temperature and humidity (Jackson et al.)
 - Downwelling solar and longwave radiation (ISCCP and NCEP)

Implementation Example

10

14

18

22

Celsius

26

30

175W 160W 145W 9 12 g/kg 15 18 ISCCP downward LW 15Feb01 06-09Z

130W

21

COARE no bubble k₆₆₀ 15Feb01 06-09Z

COARE k₆₆₀ 15Feb01 06-09Z

Application of Satellite-Derived Gas Transfer Velocity

- Campaigns
 - GasEx 98
 - GasEx 01
 - SO GasEx
- Transfer velocity computed for region with satellite inputs
 - 3 hr and 0.5° resolution
- Satellite results collocated with surface observations
 - Matching within 50 km, 3 hr

GasEx-01 Satellite-inputted COARE k 660 20N 15N 10N 5N EQ 55 160W 150W 140W 130W 120W 110W 100W 90W 8 16 32 40 0 24 cm/hr GasEx-08 Satellite-inputted COARE k 660 40S 45S 50S 55S 70W 65W 60W 55W 50W 45W 40W 35W 0 8 16 24 32 40 cm/hr

COARE Satellite Product

- Example of 3-hourly satellite-derived product from SO-GASEX
- Note strong day-to-day and regional variability
- Regional structure a complement to ship observations

Global Transfer Velocities

PARTMENT OF

COARE k co2 Jan 2001

COARE k DMS Jan 2001

- Product also computed globally to explore seasonal and interannual variability
- Transfer velocities computed for CO₂, DMS, and ozone

COARE k ozone Jan 2001

- Satellite representation of the input parameters
- Uncertainty in the physical formulation of the parameterization

Comparison of Satellite-Derived Products

Sensitivity to Input Parameters

- Examined difference between satellite- and ship-computed transfer velocities replacing only individual parameters with satellite observations
- RMS differences reflect both errors in the parameters and their sensitivity
- Largest sensitivity arises from wind speed differences

Construction of Error Budget

$$\boldsymbol{\sigma}_{k}^{2} = \left(\frac{\partial k}{\partial Ws}\right)^{2} \boldsymbol{\sigma}_{Ws}^{2} + \left(\frac{\partial k}{\partial SST}\right)^{2} \boldsymbol{\sigma}_{SST}^{2} + \left(\frac{\partial k}{\partial Ta}\right)^{2} \boldsymbol{\sigma}_{Ta}^{2} + \left(\frac{\partial k}{\partial Qa}\right)^{2} \boldsymbol{\sigma}_{Qa}^{2} + 2\frac{\partial k}{\partial SST} \frac{\partial k}{\partial Ta} COV_{SST,Ta} + 2\frac{\partial k}{\partial Ws} \frac{\partial k}{\partial Qa} COV_{Ws,Qa} + 2\frac{\partial k}{\partial Ta} \frac{\partial k}{\partial Qa} COV_{Ta,Qa}$$

- Derived and evaluated error propagation model
- Partial derivatives computed numerically from COARE
- Covariance terms calculated on grid with 1-year time series

Sensitivity greatest at high winds and SST

Estimated Uncertainty from Inputs

D ATMOSPA

NOAA

CIRES

- Assumed uncertainties of 1 m/s in wind, 0.5 K in SST, 1 K in $T_{\rm a},$ and 1 g/kg in $q_{\rm a}$

10

15

20

25

• Percentage errors relatively uniform between 15-20%

5

0

Relative Contribution to Errors

Nearly 95% of the variance related to the wind speed

Evaluation of Satellite-Derived Inputs

- Satellite inputs to the COARE model compared against direct observations during SO-GASEX
- Agreement generally favorable for a region with limited previous validation
- Satellite-derived transfer velocities, therefore, similar to computations from ship inputs

Comparison Between Ship and Satellite Transfer Velocities

- 10 min ship observations matched to 3 hour/0.5° satellite data
- Satellite-derived COARE transfer velocity agrees well with shipderived observations
- High transfer velocities from ship data are occasionally missed by satellite due to sampling

	BIAS	RMS
GasEx-98	2.75 cm/hr	11.22 cm/hr
GasEx-01	asEx-01 -1.85 cm/hr	
SO-GasEx	-1.83 cm/hr	7.19 cm/hr

Bias = Satellite - Ship

CIRES

NDAA

Comparison with Direct Observations

- Satellite transfer velocities next compared with available direct covariance measurements
- Statistics very similar for satellite and ship-based estimates

		Bias	RMS
1998	Satellite	0.0 cm/hr	20.5 cm/hr
	Ship	-3.8 cm/hr	21.1 cm/hr
2001	Satellite	5.1 cm/hr	9.9 cm/hr
	Ship	5.4 cm/hr	10.0 cm/hr

- NOAA COARE model has been successfully implemented for use with satellite-derived inputs
- Analyses show CO₂ transfer velocity variability largely governed by wind speed
- Satellite observations used as inputs to COARE gas model agree well with the ship observations during the GasEx campaigns
- Comparison with available direct observations favorable; accuracy of satellite-derived velocities comparable to computations with ship inputs

Motivation

- Need accurate global measure of air-sea CO₂ flux to quantify net uptake by the oceans and identify sources and sinks
- Remote sensing required to achieve necessary temporal and spatial sampling
- Must first derive estimates of the gas transfer velocity with known error characteristics

Sensitivity to Model Parameters

- Two primary empirical parameters in the current COARE implementation
- Graphics show range of behavior in response to changes in these parameters compared with direct observations
- Significant potential variability in behavior

Satellite Sampling Uncertainty

- Satellite sampling during GasEx cruises result in lower mean and median transfer velocity
- Differences largest for SO-GasEx due to greater frequency of high wind events missed by satellite observations.

Satellite-Ship sampled Transfer Velocity Cruise Statistics

IRFS

Bubble Enhancement Sensitivity

• text

