Evaporation and Water Transport Dynamics over the Oceans Derived from Satellites

Frank Wentz and Kyle Kilburn

Remote Sensing Systems, Santa Rosa, CA, USA

OVWST Climate Meeting, Washington, DC 19 August 2009

1

Earth Observation with a Constellation of Radiometers

SSM/I: F13, F14, F15 ; TMI ; AMSR-E

No wind direction No winds in storms Long-term Calibration Challenging

Cross-Calibrated, Multi-Platform (CCMP) Winds

Vector Wind Fields from 1987 to Present

- RSS does intersatellite calibration and wind retrievals (approaching 100 satellite years)
- Atlas & Ardizzone assimilate RSS wind products into numerical model and generate 6-hour wind vector maps for 1987 to present.
- Satellite winds receive a very heavy weight

DFS Can be Assimilated in a Similar Way rather than Viewing as Standalone

- Need Global fields (diurnal effects)
- One Component of a Larger Satellite Network (pros and con).
- This analysis is in part an evaluation of the CCMP Winds

Required Parameters for Vapor Transport

- Surface wind vector **W** (CCMP Atlas/Wentz)
- Water Vapor V (Satellite)
- Precipitation P (Satellite + rain gauges over land)
- Evaporation E (satellite winds and SST, COADS RH, Hadley Center Tair)
- Water Vapor Transport **Q** (a vector)
- Water Vapor Transport Divergence (div Q)

The Constraint

 Averaging over time (~month) at a <u>particular location</u> we have (balance equation for water vapor):

div Q = E - P

www.remss.com

Surface Winds to WV Tranport Adjustment (Weakest Link?)

Global Results on Monthly Time Scales div Q=0 → E = P

- Global evaporation balances global precipitation (with a static, latitude-dependent adjustment to rain)
- Average evaporation: 962 mm/year
- Average precipitation: 951 mm/year
- Imbalance on the order of 1%

Climate prediction models predict a muted response by precipitation see Wentz et al., 2007, *Science*.

- Trends in evaporation and precipitation have the same magnitude as trends in water vapor, in contrast with climate models
- Evaporation trend: + 1.3 % / decade
- Precipitation trend: + 1.5 % / decade
- Water Vapor trend: + 1.4 % / decade

Wind trend similar to 0.1 m/s/decadeQuikScat and buoys track extremely well6Scatterometers are extremely stable

Precipitation Trend Due to Increase in Heavy Rain

These are for global oceans, tropical oceans the same

Regional-Scale Water Balance

- Our evaporation ratios (E/P) are more consistent from basin to basin than previous estimates (values from "Physics of Climate" (POC) shown here)
- For a sufficiently large area, evaporation is about 20% larger than precipitation; with the excess finding its way onto land

Attempt at Deriving Water Vapor Transport Q Independently

> Feature Tracking to deduce the transport velocity

Problems with non-conservation of water vapor and the optical flow aperture problem, also issues near coastlines

Monthly average transports are ok... but the divergence field lacks proper structure

Ardizzone/Atlas/RSS Surface Winds + ECMWF Cross-Calibrated, Multiple Platform (CCMP) DISCOVER www.discover-earth.org

NCEP Climatology used to convert surface wind to transport wind (rotated and increased, varies with latitudes)

Water Vapor Transport Divergence

No Constraint on Q Div(Q)

Liu Water Vapor Transport Divergence (mm/hour)

Div(Q) constrained to = E-P Div(Q)

Example of WVT (Q) Adjustment

- Final Water Vapor Transport (WVT) requires the following inputs
 - Surface Wind Field
 - Columnar Water Vapor
 - Evaporation
 - Precipitation
 - NCEP Climatology to relate surface wind to transport wind
- Divergence of Q constrained to be E P
- Net effect of constraint: mostly rotate direction of vectors; median rotation of 12 degrees

Water Vapor Transport

2000-2005

Remote Sensing Systems www.remss.com

Transport Trends

Black line: transport trend

Zonal Vapor Transport

Meridional Vapor Transport

NEWS PMWC Product at <u>www.remss.com</u> 1987-2006, monthly, ¹/₄ deg. resolution

Trajectory Analysis with Surface Winds

Note that particle positions line-up with water vapor

