Utilizing Remotely Sensed Winds to Assess Global and Regional Air-Sea CO₂ Fluxes

<u>Rik Wanninkhof¹</u>, Joaquin Trinanes², and Geun-Ha Park³

¹NOAA- Atlantic Oceanographic and Meteorological Observatory, Miami FL USA
²University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
³NOAA- Cooperative Institute of Marine and Atmospheric Science (CIMAS), Miami FL USA

Scatterometry and Climate

Courtesy K. Johnson, SoFex, 2001

Outline

 \blacktriangleright Determination of gas transfer & CO₂ fluxes ➤ Gas Transfer - wind speed relationships -How they are determined - Current uncertainties \triangleright Recent estimates of global air-sea CO₂ fluxes - Global climatology - Interannual variability \succ The impact of different wind speed products (NCEPII vs. "Atlas" winds) - Global biases

- Variability

> The effect of different parameterization of gas tansfer

The Gas Transfer Velocity

The gas transfer velocity is a proportionality factor or kinetic driving force relating air water concentration differences of a gas to air-water fluxes:

$F = k \Delta CO_2 = k K_o \Delta pCO_2$

 $k = [length time^{-1}]$ obtained from a relationship between gas transfer and wind ΔpCO_2 : from measurements and interpolation interpolations aided by empirical relationships of factors affecting pCO_2 : SST, productivity, eddies, mixed layer depth Turbulent layer models self-organizing maps Diffusive sublayer aC, Diffusive sublayer k is also referred to as: Piston velocity Turbulent laver Gas exchange coefficient (water) Gas transfer coefficient Scatterometry and Climate _

How is the relationship between k and U_{10} determined

1. Local studies using natural or purposeful gaseous tracers

(response time \approx day, scale $\approx 10^2$ km))

Summary of dual deliberate tracer experiments

2. Micro-meteorological methods (co-variance, gradient) (response time \approx hour, scale \approx 1 km)

Scatterometry and Climate

Empirical relationships with wind:

Scatterometry and Climate

k_{global} is constrained:

 $k_{global} = a \langle u^2 \rangle = constant$

SO:

if <u²> changes so must "a" higher resolution wind leads to smaller "a"

L11802

NAEGLER ET AL.: EXCESS ¹⁴C AND AIR-SEA GAS EXCHANGE

L11802

Table 1. Characteristics of the Five Wind Speed Climatologies Used in This Study: Global Annual Mean Wind Speeds Over the Ice-Free Ocean $\langle u \rangle$ and $\langle u^2 \rangle$, Resulting Gas Exchange Parameter a_q for Different Temporal and Spatial Resolutions, the Product $a_q \cdot \langle u^2 \rangle$, and the Global Annual Mean Piston Velocity k (Calculated According to Equation (2))^a

Parameter	Unit	NCEP	ECMWF	SSMI	QSCAT	ERS12	Mean $\pm \sigma$	σ/Mean
$\langle u \rangle$	m/s	6.6	7.0	7.8	7.9	7.3	7.3 ± 0.6	0.08
$\langle u^2 \rangle$	$(m/s)^2$	46.9	53.1	65.0	66.4	57.1	57.7 ± 8.2	0.14
a, (monthly winds, $5^{\circ} \times 4^{\circ}$ grid)	$(cm/hr)/(m/s)^2$	0.40	0.35	0.29	0.29	0.34	0.33 ± 0.05	0.14
a_{α} (monthly winds, 1° ×1° grid)	$(cm/hr)/(m/s)^2$	0.39	0.34	0.28	0.27	0.32	0.32 ± 0.05	0.14
a, (daily winds, $1^{\circ} \times 1^{\circ}$ grid)	(cm/hr)/(m/s)2	0.38	0.33	-	_	-	-	-
$a_a \cdot \langle u^2 \rangle$	cm/hr	18.1	17.9	18.2	18.1	18.4	18.1 ± 0.2	0.01
$\langle \vec{k} \rangle$	cm/hr	16.6	16.2	16.4	17.3	16.9	16.7 ± 0.4	0.02

^aNote that for the satellite wind speed data sets (SSM/I, QSCAT and ERS1/2), no daily resolution with full global coverage is available. $\langle u \rangle$, $\langle u^2 \rangle$, $a_q \cdot \langle u^2 \rangle$ and $\langle k \rangle$ are calculated from monthly winds on a 1° × 1° grid.

Current estimates of global air-sea CO₂ fluxes

Impact of winds: NCEPII vs. "Atlas" $\langle U^2 \rangle_{NCEPII} \approx 1.25 \langle U^2 \rangle_{Atlas}$

A cross-calibrated multiple platform ocean surface wind data set (Eos, vol. 90, #27, 7 July 2009)

Robert Atlas, Ross N. Hoffmann, Joseph Ardizzonec

National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Cwy., Miami, FL, USA 33149; Atmospheric and Environmental Research, Inc., 131 Hartwell Ave., Lexington, MA 02421-3126; SAIC NASA Goddard Space Flight Center, Greenbelt, MD USA 20771

Patterns of wind speed biases

EqPac: NCEP- more evasion High latitude: NCEP- more uptake Two processes reinforce each other

Regional differences in fluxes for NCEP II and "Atlas"

Air-Sea CO₂ fluxes versus wind speed

Efflux at low winds Invasion at higher winds Very high winds have Limited impact due to limited frequency

"Atlas" winds (2nd moment) significantly lower then NCEPII The maximum invasion flux is at lower winds

Difference in functionality

With Atlas wind speed Mean difference -0.38 \pm 2.5 cm hr⁻¹

Conclusions

- ➢ For quadratic dependencies between gas transfer and wind, the 2nd moment of winds should be used (<U²>) rather than the mean (<U>)
- ➤Gas transfer velocities- wind speed relationships should be scaled to the global mean 2nd moment of the wind product used
- ➢Global wind products show regional differences that will impact global CO₂ fluxes.
- ➢Differences are accentuated by the regional distinct (and wind speed distinct) direction of fluxes