

Surface Turbulent Fluxes and Scatterometry

Mark A. Bourassa

With input from Paul Hughes and Ryan Maue

Center for Ocean-Atmospheric Prediction Studies & Department of Meteorology The Florida State University, USA

Many Air/Sea Interaction Processes - Most are strongly influenced by stress -

Climate Workshop 2

Curl of the Stress

Standard Deviation of the Curl of the Stress

Issues to be Addressed

- Does a scatterometer respond to stress rather than other alternatives (e.g., wind or equivalent neutral wind)?
- How much does sub-monthly variability in winds and other variables influence the latent heat flux?
 - Quite a few people suggest that there is little impact
 - A few say it is a big deal
 - Magnitude has never been determined
- Biases due to treating satellite winds as ship winds
 - Focusing on wave issues

Why Calibrate to 'Winds' Rather than Stress

- Radar backscatter was observed to be dependent on wind speed and/or wave height in the 1950s.
- In 1963 Dick Moore had the idea that backscatter could be used to estimate oceanic variables.
- The NASA Sea Surface Stress (S³) report indicated that scatterometers probably did respond to stress rather than wind.
- The number of stress observations available for calibration was approximately zero. Therefore it was desirable to calibrate to wind, for which the collocated observations would be plentiful.
- Willard Pierson, Vince Cardone and colleagues found that wind speed could be adjusted to be more consistent with surface stress.
 - Equivalent neutral wind

Mark A. Bourassa

Wind or Stress?

• The surface turbulent stress (momentum flux density) is usually parameterized as

$$\tau = \rho \, C_{\scriptscriptstyle D} \, U_{\scriptscriptstyle 10}^2$$

• This form can be more accurately written as

 $\mathbf{\tau} = \rho \, \boldsymbol{C}_{\scriptscriptstyle D} \left| \mathbf{U}_{\! 10} \right| \mathbf{U}_{\! 10}$

• It can be further improved in terms of surface relative wind vectors:

$$\mathbf{\tau} = \rho \, C_{\scriptscriptstyle D} \, \left| \mathbf{U}_{\! 10} - \mathbf{U}_{\rm sfc} \right| \! \left(\mathbf{U}_{\! 10} - \mathbf{U}_{\rm sfc} \right)$$

• Does a scatterometer respond to \mathbf{U}_{10} or to $\mathbf{U}_{10} - \mathbf{U}_{sfc}$?

- *Cornillon and Park* (2001, *GRL*), *Kelly et al.* (2001, *GRL*), and *Chelton et al.* (2004, *Science*) showed that scatterometer winds were relative to surface currents.
- *Bentamy et al.* (2001, *JTech*) indicate there is also a dependence on wave characteristics.
- Bourassa (2006, WIT Press) showed that wave dependency can be parameterized as a change in U_{sfc} .
- Bourassa and Wentz have both find biases related to air density.

Mark A. Bourassa

Percentage Change in Surface Relative Winds Example for a 00Z Comparison

20

- The percentage change in surface relative winds is roughly proportional to the change in energy fluxes.
- The percentage change squared is roughly proportional to changes in stress.
- The drag coefficient also changes
 - >50% changes in stress associated with strong storms!
 - Can have opposite change nearby.
 - Huge change in the curl of the stress!
 - Caveat: models uncoupled!

From Kara et al. (2007, GRL)

The Log-Wind Profile, and Equivalent Neutral Winds

The dependency of wind speed (U) on the height above the surface (z) is described by a log-wind profile

$$\mathbf{U} - \mathbf{U}_{sfc} = \frac{\mathbf{u}_{*}}{k} \left[\ln \left(\frac{z}{z_{o}} + 1 \right) + \phi(z, z_{o}, L) \right]$$

- The friction velocity (u_*) is the squareroot of the kinematic stress: $\tau = \rho u_*^2$
- The ϕ term is a function of atmospheric stratification.
- The 10m Equivalent Neutral wind $(U_{10\text{EN}})$ is calculated by using the value of u_* determined from buoy observations, the corresponding value of z_0 , and setting ϕ to zero.

$$U_{10EN} = \frac{u_*}{k} \ln\left(\frac{10}{z_o}\right)$$

Mark A. Bourassa

What If A Scatterometer Responds to Stress?

• If scatterometers respond in a manner consistent with equivalent neutral winds, then they respond to changes in friction velocity (u_*) .

$$U_{10EN} = \frac{u_*}{k} \ln\left(\frac{10}{z_o}\right)$$

- If scatterometers respond to stress, then it responds to changes in air density and change in friction velocity!
 - The friction velocity (u_*) is the squareroot of the kinematic stress:

$$\tau = \rho_{air} u_*^2$$

$$U_{10\text{EN}} = \frac{\left(\tau / \rho\right)^{0.5}}{k} \ln\left(10 / z_o\right)$$

- If scatterometers respond to stress, then calibrations to this form of equivalent neutral winds will be off by a factor of $\rho^{0.5}$,
 - Or more accurately, in proportion to (actual density / mean calibration density)^{0.5}

Mark A. Bourassa

Example: A Cold Air Outbreak

Mark A. Bourassa

Example: Density-Related Bias in Equiv. Neut. Winds

• Shows overestimate of QSCAT winds.

•
$$U_{10} - U_{10} \, (\bar{\rho} \,/\, \rho)^{0.5}$$

 Density is calculated from GFS 2m values.

Goal & Issues

- Interest: How big are biases in fluxes associated with common assumptions?
 - On what time scales will these biases seriously alter assumptions
- Goal: Assess the influence of synoptic or finer scale variability on LHF
 - That is, differences from fluxes based on monthly averaged inputs
 - Wave-related variability is ignored in this part of the study

Submonthly Contribution to Average LHF

• *L* is determined through a bulk formula.

 $L \approx \overline{\rho} L_v C_E \overline{U} (\overline{q}_{sfc} - \overline{q})$

- Where the overbar indicates a monthly average
- There is considerable controversy about that accuracy of this averaging
- A more accurate approach is to calculate the flux at each time step then average these fluxes: $L \approx \rho L_v C_E U(q_{sfc} q)$
- If we apply Reynolds averaging this equation becomes

$$L = \overline{\rho}L_{v} \overline{\left(\overline{C}_{E} + C'_{E}\right)} \overline{\left(\overline{U} + U'\right)} \overline{\left(\overline{q}_{sfc} - q'_{sfc} - q + q'\right)}$$

- If we assume density variations are not important, this equation becomes $L = \overline{\rho} L_v \overline{C_E} \overline{U}(\overline{q}_{sfc} - \overline{q}) + \overline{\rho} L_v \left(\overline{C_E} \overline{U'(q' - q'_{sfc})} + \overline{U} \overline{C'_E(q' - q'_{sfc})} + \overline{(q' - q'_{sfc})} \overline{C'_E U'}\right)$
- Following examples of monthly biases are based on ECMWF reanalysis.
 - Plots bias from using monthly averaged flux input data
 - They do not include wave information

How Do Waves Enter The Picture?

• The surface turbulent stress and LHF are usually parameterized as

$$\tau = \rho C_D U_{10}^2 \qquad \qquad L = \rho L_v C_E (q_{10} - q_{\rm sfc}) U_{10}$$

• This form can be more accurately written as

$$\boldsymbol{\tau} = \rho C_{D} \left| \mathbf{U}_{10} \right| \mathbf{U}_{10} \qquad \qquad L = \rho L_{v} C_{E} \left(q_{10} - q_{\text{sfc}} \right) \left| \mathbf{U}_{10} \right|$$

• It can be further improved in terms of surface relative wind vectors:

$$\boldsymbol{\tau} = \rho C_{D} \left| \mathbf{U}_{10} - \mathbf{U}_{sfc} \right| \left(\mathbf{U}_{10} - \mathbf{U}_{sfc} \right) \qquad L = \rho L_{v} C_{E} \left(q_{10} - q_{sfc} \right) \left| \mathbf{U}_{10} - \mathbf{U}_{sfc} \right|$$

- Does a scatterometer respond to \mathbf{U}_{10} or to $\mathbf{U}_{10} \mathbf{U}_{sfc}$?
 - *Cornillon and Park* (2001, *GRL*), *Kelly et al.* (2001, *GRL*), and *Chelton et al.* (2004, *Science*) showed that scatterometer winds were relative to surface currents.
 - *Bentamy et al.* (2001, *JTech*) indicate there is also a dependence on wave characteristics.
 - Bourassa (2006, WIT Press) showed that wave dependency can be parameterized as a change in U_{sfc} .

Mark A. Bourassa

Caveats

- Wave portion of analysis is based on theory observations and not sufficient
- The one thing flux modeler agree on is that they disagree on how to model wave influence
 - There is a wide range of proposed mechanisms for how waves modify surface fluxes.
- Flux models used to study waves
 - Model used herein is Bourassa (2006):
 - Bourassa, M. A., 2006, Satellite-based observations of surface turbulent stress during severe weather, Atmosphere Ocean Interactions, Vol. 2., ed., W. Perrie, Wessex Institute of Technology Press, Southampton, UK, 35 52 pp.
 - Moisture roughness length based on surface renewal theory: Clayson-Fairall-Curry (1996) model.

Example of Results Change in LHF Due to Waves: March 1999

Summary

- Scatterometers do seem to respond to stress rather than kinematic stress (equivalent neutral winds) or earth-relative winds.
- Small regional and seasonal biases in the traditional $U_{10\text{EN}}$ related to the near-surface air density.
- Conversion of the existing geophysical model function for winds to a model function for stress requires considerations of non-linear terms in the tuning.
- Might be able to estimate stress with better signal to noise ratio than for wind retreivals.

Summary

- Synoptic scale variability in regional latent heat fluxes and flux related variables can be large (>50 Wm⁻² in some regions).
 - Particularly down wind of continents and by western boundary currents.
 - Implies heat fluxes in the Southern Ocean will be underestimated
- In the tropics, sub-monthly variability ignoring waves can exceed 20Wm⁻²; however, it is typically <10 Wm⁻².
- Monthly averaged tropical **wave related** variability is more wide spread:
 - Tends to reduce LHF by roughly 5Wm⁻² in the Western tropical Pacific Ocean
 - Slightly increases LHF in the Eastern tropical Pacific Ocean
 - Could be of interest on ENSO time scales and longer.
- Similar magnitude and spatial distribution to what some people call the global warming signal.

Mark A. Bourassa

Surface Turbulent Fluxes and Scatterometry

Mark A. Bourassa

With input from Paul Hughes and Ryan Maue

Center for Ocean-Atmospheric Prediction Studies & Department of Meteorology The Florida State University, USA

Drag Coefficient vs. Wind Speed

- Preliminary data form the SWS2 (Severe Wind Storms 2) experiment.
 - The drag coefficients for high wind speeds are large and plentiful.
 - The atypically large drag coefficients are associated with rising seas
- Many models underestimate these fluxes.
- Spread is much bigger than expected from observational errors

Wave Induced Changes in LHF

-10 -8 -6 -4 -2 2 4 6 8 10 12 Wm^{-*}

- Examples from snapshots (6 hourly time steps)
- Input data:
 - WaveWatch3 (WW3) winds and waves
 - ECWMF temperatures and humidities

Mark A. Bourassa

Monthly Averaged Changes in LHF: Two Examples

-10 -8 -6 -4 -2 2 4 6 8 10 12 Wm^{-*}

- January 2003 (left) and June 1999 (right)
- One persistent feature is a reduction of heat transfer from the western Pacific warm pool to the atmosphere
- The roughly 5Wm⁻² across basin difference is important for studies of decadal
 variability, and possibly for ENSO

Mark A. Bourassa

Ocean's TKE Based on Observed Surface Fluxes

