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Outline
« \What are LMR?

» Sustainably Harvested species
* Protected species (Endangered and threatened)
» Critters just hanging out

* Applications in the oligotrophic regime - easy

» Applications in coastal currents - timing

» Applications near shore - proximity

* Applications pretty much on-shore --7?7
* Promising improvements
* Analysis of Alternatives matrix



NOAA Mission-related terms

* Integrated Ecosystem Assessment — the new
term for bundling lots of stuff into a report.

* Process now formal
e Vector winds are in the West Coast Version

* Marine Spatial Planning — a requirement to
identify and balance all uses of a given marine
area

* Marine protected areas — those designated as
limited use- usually very strict and Byzantine
rules of usage.
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Wind Stress Curl ERS2 January -
March 1998




ERS2 Curl and AVHRR
SST 18 C Isotherm
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ERS2 Curl, AVHRR 18 C SST and
SeaWiFS 0.2 Chl a




Curl, 18 C, 0.2 Chl a
and Swordfish CPUE>15 pkh
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Curl, SST, Chl a, Swordfish CPUE
and Turtle Tracks
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Convergence Inferred from Satellite

SeaWiFS Chlorophyll a, MWF wind stress curl, Pathfinder AVHRR
180° to 160°W, B-day means
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Aerial Survey Results

1000 1 Ghostnet Surveys March/April 2005
] North Pacific Subtropical Convergence Zone

500

Debris sightings (# per hour)

MODIS Chl a (mg m-3) S >
155W 2 220N

001 0075 040 0425 015 025 1.0
MODIS data courtesy of NASAJGSFC and NOAAJPFEL




Rationale

Protect endangered species

Minimize navigation
hazards

Endangered Hawaiian Monk seal trapped in marine debris

Maintain
healthy coral
reef
ecosystems

Reduce
wasteful

“Ghost
fishing”

Derelict fishing net anchored on coral



Highways for the Birds

* Felicisimo, Munoz, and Gonzalez-Solis (PLOS-
1)
e Used an energy expenditure model and

quikscat winds to find optimal migration paths
for Cory Shear\Waters

* Changes in wind distribution may cause ares of
blockage that prevent return to breeding
grounds.



Predicted and Actual Paths
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Phenology (4=4%154%2%):

1. The scientific study of periodic biclogical phenomena, such as flowering,
breeding, and migration, in relation to climatic conditions.

2. The relationship between a periodic biological phenomenon and
climatic conditions. (American Haritage Dictionary)
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MOTIVATION

* What ecosystem impacts can we expect from climate-driven
changes in the phenology of coastal upwelling?




TASK 1: Phenological Upwelling Indices

Can we develop simple indices that describe the phenology of
coastal upwelling in the California Current?

» Timing of onset (spring transition)
= Duration of upwelling season
= Intensity of upwelling (episodic, integrated)

| |

Use classical Bakun Upwelling Index:
* long time series (~40 yrs)
» often used in coastal oceanography, fisheries
» large-scale context
= does not resolve cross-shelf variability, curl




Interannual Variability in Cumulative Upwelling Index
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PHENOLOGICAL CONSEQUENCES:
Seabird Reproduction
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Interannual Variability in Upwelling: (1) Timing

Spring Transition Index (Julian Day)
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El Nifio events

* Earlier onset of upwelling in south

» Trend to later spring transition in north

* Delayed upwelling during El Nifio events

» Upwelling “surplus” or “deficit” at climatological transition date




SEABIRDS at the FARALLON ISLANDS

* Two bird species from same location but different life strategies
» Look at the timing of egg laying (mean, variance)




Lagged Correlation Maps: Mean Lay Date vs. Alongshore Wind
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Good (Early) & Bad (Late) Years for Cassin’s Auklet

Four earliest Auklet Four latest Auklet
mean egg-laying years mean egg-laying years
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» Jan-Feb mean winds (vectors) & Feb-Mar mean SST (colors)
» Good years: strong JHKL, anomalously strong upwelling, cool SSTs
* Bad years: weak JEK, anomalously weak upwelling, warm SSTs




SUMMARY

. Upwelling timing, duration and intensity highly variable;

. Periods of high (low) integrated upwelling in 1970s and 1988-2004 (1980-95);
. Trend towards later, shorter upwelling in northern California Current;

. Delayed upwelling in El Nifio years;

. Winter pre-conditioning (upwelling) controls seabird reproductive timing;

. Climate change - changes in upwelling process;

. Principal ecosystem effects of interannual-decadal climate variability could be
phenological.

Durant et al. (2005)




On the formation of a conservation hotspot

for North "‘; eyloggerhead Sea Turtles
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Formation of a Productivity Hotspot

Physical forcing —> Primary production —> Prey ¥ —> Predator

l l l

surface winds chlorophyll-a fronts &
upwelling eddies
sea-surface
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Suitable Habitat off Baja California

habitat:
preferred vs avoided
(Aarts et al. 2008)

|) environmental conditions within
preferred habitat? | ——
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2) how do these conditions differ within
adjacent (avoided) habitat?
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Surface winds & Upwelling
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QuikSCAT Sfc Winds (25-km spatial resolution) Vertical Ekman velocity (Risien & Chelfton, 2008)




Frontal probability & Sub-surface dynamic height
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Formation of a productivity hotspot
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Multi-species hotspot off Baja California, Mexico
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Questions from Conservators

 |f MPA designated:

* Must identify key factors for monitoring

e This includes scatterometer data
- Will it be available? (ASCAT will not work for this)
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Closing the Coastal Gap
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Desirements

 ASCAT will be good enough for many of the
oligotropic applications regarding LMR.

* Need to close the coastal gap and ensure at
least once daily coverage

* Push for XOVMM. Until we get that capabillity,
most fisheries and protected species work will
be forced to use models.
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