Toward the J-OFURO Ver.3

Masahisa Kubota¹, Hiroyuki Tomita² and Shinsuke Iwasaki¹

*1:School of Marine Science and Technology, Tokai University, Shimizu, Shizuoka, Shizuoka, Japan
*2: Research Institute for Global Change, Japan Agency for Marine and Earth Science Technology, Yokosuka, Japan

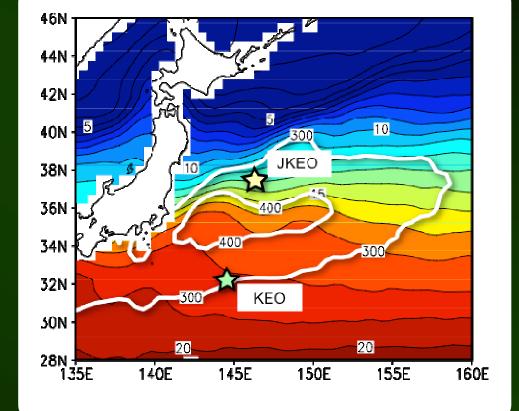
Scatterometry and Climate Arlington, Virginia, 19 - 21 August 2009

Background 1

Global surface heat flux data sets are used in many studies related to air-sea interaction, global climate change...etc. Accurate surface flux data set is critical for climate studies. Recently various kinds of surface heat flux data sets are provided, e.g., satellite-derived data, reanalysis data and in situ data.

However, the accuracy of those flux data is not so high still now. We need more improvements !

Comparison Results


KEO and JKEO buoys Surface Fluxes, Upper Ocean Temperature and Salinity

NOAA/PMEL 32N, 145E 16-Jun-2004- Present

JKEO buoy

JAMSTEC/IORGC NOAA/PMEL 38N, 146E deployed on 18-Feb-2007

http://www.jamstec.go.jp/iorgc/ocorp/ktsfg/data/jkeo/

Table 1. Statistices for each surface flux component. (a) NRA1 and (b) NRA2 (a)

SWR	LWR	LHF	SHF	THF
0.80	0.79	0.92	0.93	0.93
48	15	48	20	77
-1	1	38	9	49
SWR	LWR	LHF	SHF	THF
0.88	0.78	0.91	0.94	0.94
38	15	62	23	85
5	-6	60	7	56
	0.80 48 -1 SWR 0.88 38	0.80 0.79 48 15 -1 1 SWR LWR 0.88 0.78 38 15	0.80 0.79 0.92 48 15 48 -1 1 38 SWR LWR LHF 0.88 0.78 0.91 38 15 62	0.80 0.79 0.92 0.93 48 15 48 20 -1 1 38 9 SWR LWR LHF SHF 0.88 0.78 0.91 0.94 38 15 62 23

Kubota et al.(2008)

<u>Background 2</u> Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations (J-OFURO) was constructed in 2000. J-OFURO has provided global momentum and heat flux products.

Recently new surface flux data set was constructed in J-OFURO as the version 2. In the version 2 many points are improved compared with the version 1.

http://dtsv.scc.u-tokai.ac.jp/jofuro/oracledatabase/web/index.html

Comparison of our J-OFURO products					
	Ver.1	Ver.2			
Parameters	Wind(-stress) Vectors	Wind(-stress) Vectors & Magn.			
	U,V $\mathcal{T}_x,\mathcal{T}_y$	$U, V \& \overrightarrow{V} \mathcal{T}_x, \mathcal{T}_y \& \overrightarrow{\tau}$			
Time Coverage	1999/8/1- 2000/6/30	1999/8/1-2008/12/31 Updating			
Time Resolution	Daily	Daily			
Spatial Coverage	Almost Global	(80°S-60°N, 0°E-0°E)			
Spatial Resolution	Only 1° x 1°	1° x 1° & 0.5° x 0.5° (preparation)			
Raw Data	Level 2B swath data	Level 2B swath data			
	(old version/ 25 km)	(new version/ 12.5 km)			
Other Improvements in Wind-retrieval algoritum					

high wind speeds

OVERVIEW of the J-OFURO version 2

Key Features

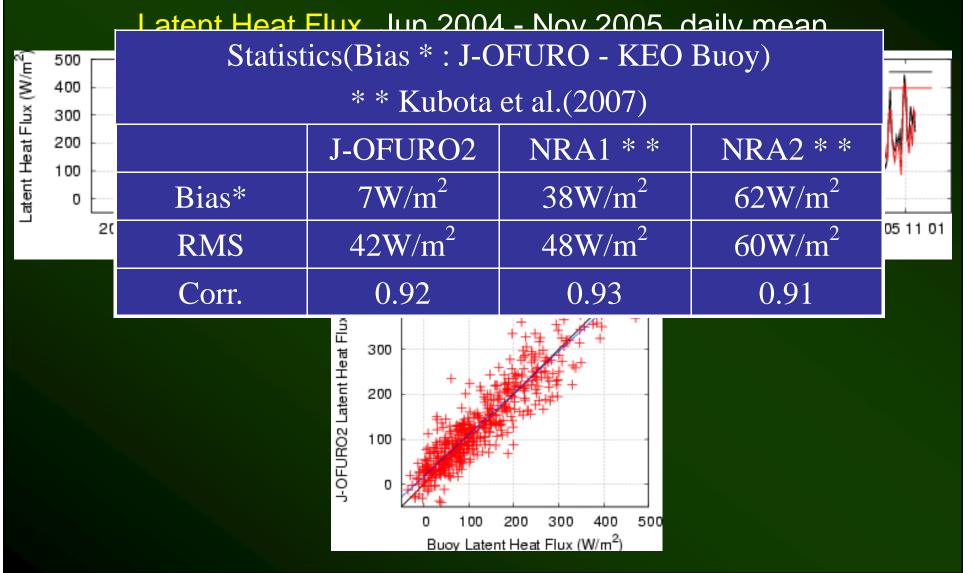
- Daily and monthly mean, 1988-2005
- Global (60s-60n), 1 deg. x 1 deg. grid
- Modern bulk method (COARE 3.0)
- Use of Multi-satellite data
- Optimum Interpolation
- Variables

Latent and Sensible Heat Fluxes, Net Heat Flux, Wind Speed, Surface Saturated Specific Humidity, Surface Air Specific Humidity

OVERVIEW of the J-OFURO version 2

Major differences between J-OFURO1 and 2

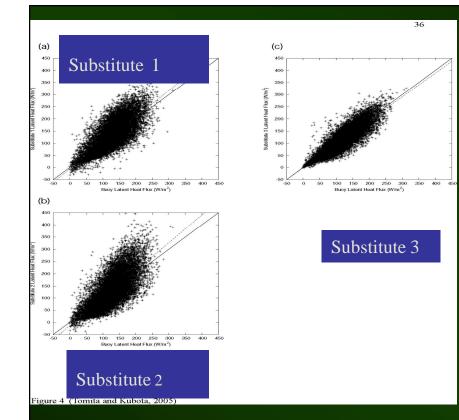
	J-OFURO1	J-OFURO2
Availability	1992-2000 3 days mean	1988-2005 daily mean
Bulk Method	Kondo (1975)	COARE 3.0
Satellite	Single	Multi


USE of MULTI-SATELLITE DATA

Data Sources

	J-OFURO1	J-OFURO2
Wind Speed	SSMI F10 or F13	All SSMIs (F08-F15) ERS1/2, QuikSCAT, AMSR-E, TMI
Surface Air Specific Humidity	11001113	All SSMIs (F08-F15)
CCT	Reynolds SST	MGDSST (By JMA)
SST	AVHRR	AVHRR, AMSR-E

Comparison Results


KEO buoy

Future Issues

- 1. Accurate Specific humidity
- 2. Spatial resolution of radiation products
- 3. Satellite-derived sensible heat fluxes
- 4. Continuity of data characteristics
- 5. Impact of high-speed winds on fluxes
- 6. Heat fluxes in the high-latitudes
- 7. Use of wind direction

etc.

Tomita and Kubota, 2006

Table 4

The Substituted data sets of J-OFURO latent heat flux and the statistics between TAO/TRITON buoy and each Substituted data set. Units in W m^-2, except correlation.

Data set	W	SST	Qa	Bias (buoy - Substitute)	RMSR	Corr.
Substitute 1	buoy	J-OFURO	J-OFURO	-8.74	40.93	0.74
Substitute 2	J-OFURO	buoy	J-OFURO	-9.07	47.44	0.71
Substitute 3	J-OFURO	J-OFURO	buoy	4.06	23.30	0.87
Substitute 4	buoy	J-OFURO	buoy	0.57	10.10	0.97
Substitute 5	J-OFURO	buoy	buoy	3.53	20.91	0.90

Accurate (temporal and spatial mean) specific humidity data

Improvement of the algorithm for DMSP/SSMI
 Development of algorithms for new sensors
 Usage of multi-sensors for specific humidity

USE of MULTI-SATELLITE DATA

Data Sources

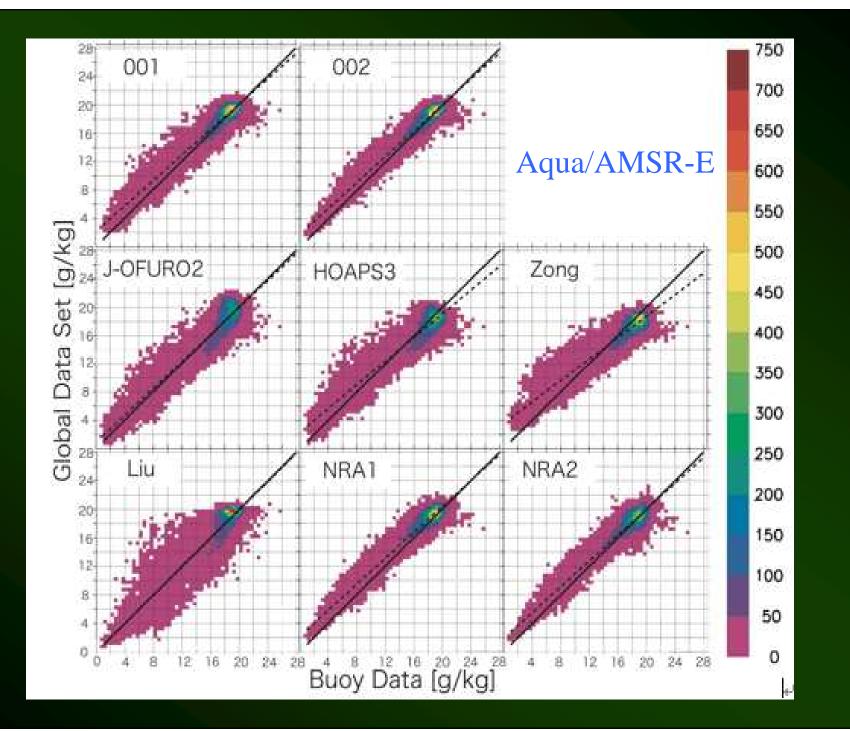
	J-OFURO1	J-OFURO2
Wind Speed	SSMI F10 or F13	All SSMIs (F08-F15) ERS1/2, QuikSCAT, AMSR-E, TMI
Surface Air Specific Humidity	11001113	All SSMIs (F08-F15)
CCT	Reynolds SST	MGDSST (By JMA)
SST	AVHRR	AVHRR, AMSR-E

Microwave Radiometers

- DMSP/SSMI
- Aqua/AMSR-E

(Zong et al., 2007, Kubota and Hihara, 2008)

- TRMM/MI
- GCOM-W 1 and 2
- GPM/MI


->

Good algorithm for various microwave sensors

Products used in this study for comparison(Kubota and Hihara, 2008)

Products	Algorithm	Sensor
J-OFUR0 2	Schlussel et al. (1995)	SSM/I
HOAPS 3	Bentamy et al. (2003)	SSM/I
Zong	Zong et al. (2007)	AMSR-E
Liu	Liu (1986)	AMSR-E
NCEP/NCAR	Reanalysis data	
NCEP/DOE	Reanalysis data	

"Zong" and "Liu" s products are estimated by ourselves using AMSR-E Geophysical data provided by Remote Sensing Systems

All Areas

Buov data Ig/kc

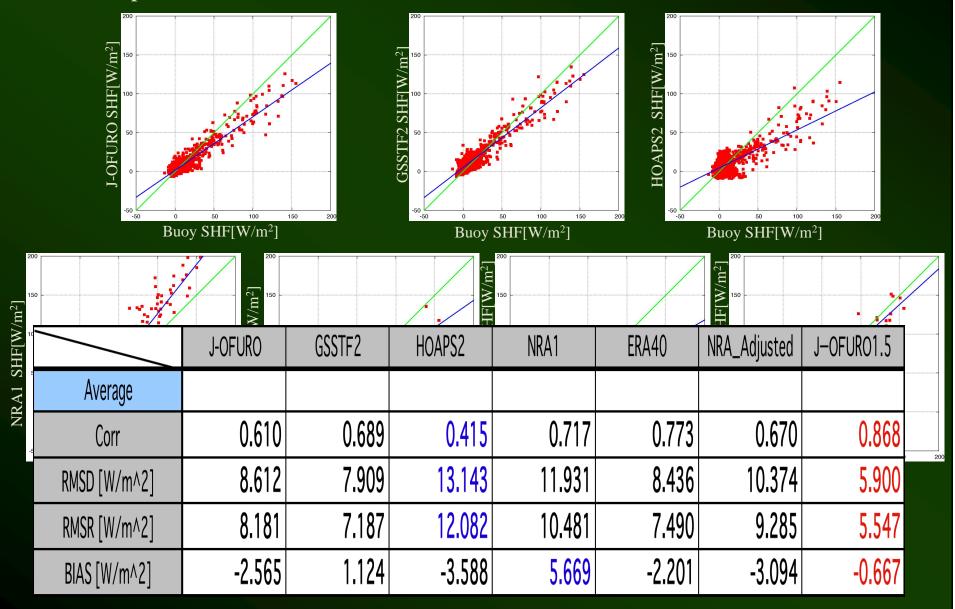
We should continue to develop a good algorithm for various microwave sensors including a new sensor

Future Issues

- 1. Accurate Specific humidity
- 2. Spatial resolution of radiation products
- 3. Satellite-derived sensible heat fluxes
- 4. Continuity of data characteristics
- 5. Impact of high-speed winds on fluxes
- 6. Heat fluxes in the high-latitudes
- 7. Use of wind direction

etc.

3. Spatial resolution of radiation products


ISCCP data: Results (called the FD datasets) are obtained every three hours over the whole globe on a 280 km equal-area (EQ) global grid covering the time period July 1983 through December 2007.

3. Satellite-derived sensible heat fluxes

	Wind speed	SST	Air temperature	Algorithm
J-OFURO				Kubota and Mitsumori (1997) (Bowen Ratio)
J-OFURO1.5	SSMI/Wentz (1994, 1997) single Satellite	Reynolds and Smith (1994)	ERA40	COARE 3.0 (Fairall et al., 2003)
J-OFURO2	Multi Satellite (SSMI,QSCAT,ER S,TMI)	MGDSST	NRA1	COARE 3.0 (Fairall et al., 2003)
GSSTF2	SSMI/Wentz (1994, 1997)	Reynolds and Smith (1994)	NRA1	Chou (1993)
HOAPS3	new developed neuronal network algorithm (not published yet). Satellite is SSMI/Wentz (1994)	NODC/RSMAS AVHRR Oceans Pathfinder SST product	the mean of 2 methods: 1) assume 80% constant RH and 2) assume the DT (1 K).	COARE 3.0 (Fairall et al., 2003)

Results

Scatter plots

Future Issues

- 1. Accurate Specific humidity
- 2. Spatial resolution of radiation products
- 3. Satellite-derived sensible heat fluxes
- 4. Continuity of data characteristics
- 5. Impact of high-speed winds on fluxes
- 6. Heat fluxes in the high-latitudes
- 7. Use of wind direction

etc.

4. Continuity of data characteristics

Carol Anne suggested the trend is related to the number of usable sensors the day before yesterday. This means the characteristics of satellite-derived flux data is not continuous by changing sensors and increasing the number of the sensor. This is an important problem when we use satellite-derived flux products for climate studies. Although it is difficult to make reanalysis data for satellite- derived flux, we should be careful about this point.

Important things:

The products should be used by many users in many studies. The results provide us important information for improvement of the products. We need any feedback from users.

http://dtsv.scc.u-tokai.ac.jp/jofuro/oracledatabase/web/index.html

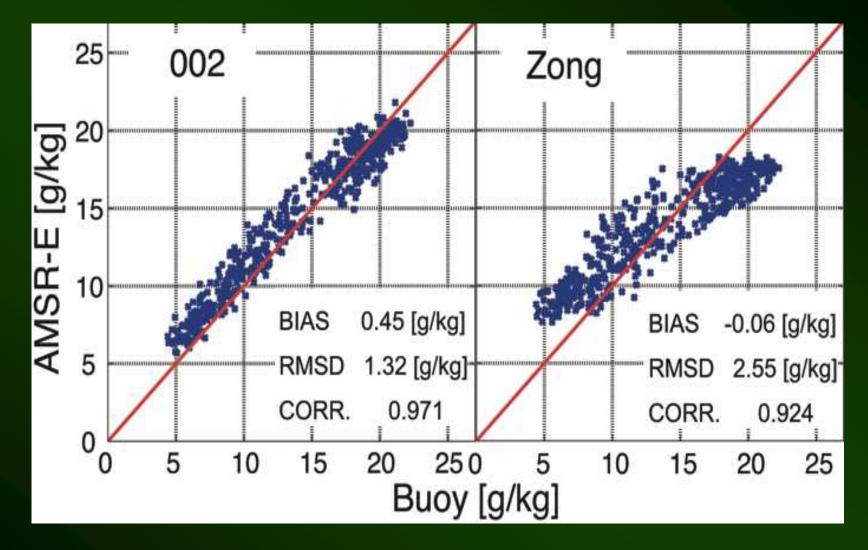


Table 5	(Tomita	and Kubota,	2007)
---------	---------	-------------	-------

Sens	sors	F11	F13	F14	F15	TMI	ERS	QuikSCAT
Samplir	ng error	0.99	0.99	1.15	1.13	-	0.91	0.80
Combination	RMS error	2.30	1.93	1.88	1.67	2.38	3.01	1.70
Sim2 + TMI	1.40	*	*	*	*	*	*	*
Sim2	1.45	*	*	*	*	-	*	*
Sim4	1.71	*	*	*	-	-	-	-
Sim5	1.70	*	*	*	-	-	*	-

(Example)

Scatter plots of surface specific humidity observed by KEO buoy and derived from AMSR-E data.