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* Relative responses of surface wind stress magnitude and 10-m neutral
wind speed to mesoscale SST perturbations from satellite observations

» Analytically relate surface wind stress magnitude perturbations to those
of neutral wind speed

» Show that the ambient large-scale wind speed modulates the stress
response relative to the wind speed response



Satellite Wind and SST Datasets
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QuikSCAT measures the wind speed
and direction over most of the ice-free
global ocean in near all-weather
conditions

Advanced Microwave Scanning
Radiometer on the EOS-Aqua satellite
(AMSR-E) has measured SST globally
since June 2002

Analyze monthly-averaged satellite
data from June 2002 to August 2007

1-month averaged unfiltered wind
speed (colors) and SST (contours)
for July 2002

SST contour interval is
2C



QuikSCAT Neutral Wind Speed (colors) and
AMSR-E SST (contours) over the South
'nAian Ocean

 July 2002 mean spatially
high-pass filtered neutral
wind speed (colors) and
SST (contours)

* Neutral wind speed and
SST perturbations are very
highly correlated

« Spatial filter removes
spatial variability larger

than 20°lon by 10°lat
Perturbation SST

o contour interval is
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Relative Size of SST Perturbations

High-Pass Filtered SST Field
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« SST perturbations in this 1-yr average for 2003 are on the order
of 100-1000 km across



5-yr Average Spatially High-Pass Filtered
QuikSCAT 10-m Neutral Wind Speed

Mean Jun-2002 to Aug-2007
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SST-Induced Perturbations of QUIKSCAT
Neutral Wind Speed (colors) and AMSR-E SST
(contours) averaged for 5 years
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SST-Induced Perturbations of QuikSCAT Wind
Stress Magnitude (colors) and AMSR-E SST
(contours)
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Contours are spatially high-pass filtered AMSR-E SST with a contour interval of 0.5C



Perturbation QuikSCAT Wind Direction

a) Kuroshio b) Gulf Stream

 Wind direction
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Statistical Relationships Between
Perturbations of Neutral Wind Speed,
\WinAd Stress Magnitude and SST

e These observations lead to perplexing observation
#1: The neutral wind speed and wind stress
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Geographical Variablility of Neutral
Wind Speed and Wind Stress
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» Perplexing observation #2: Stress coupling
coefficients not well related to neutral wind speed
coupling coefficients; for instance, the stress
coefficient is smallest where the neutral wind speed
coefficient is largest (over the eastern tropical
Pacific)




Time Series of Coupling Coefficients
Northern Hemisphere Mid-Latitudes
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Time Series of Coupling Coefficients
Southern Hemisphere Mid-Latitudes
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Animation of Monthly-Averaged QuikSCAT Spatially High-Pass
Filtered Wind Stress Magnitude and Neutral Wind Speed

June 2002
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Seasonal Variations of SST-Induced Wind
Stress Magnitude and Neutral Wind Speed
Perturbations

erplexing observation #3 ~ . There is a large
seasonal pulsing. in the SST-induced wind
stress magnitude field:that'is not mirrored in the
SST-induced neutral wind.speed field




Analytical Relationship Between Time-
Averaged Spatially High-Pass Filtered
Neutral Wind Speed and Stress Magnitude
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Analytical Relationship Between Time-
Averaged Spatially High-Pass Filtered Neutral
Wind Speed and Stress Magnitude
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e Stress perturbations are proportional to the neutral wind speed
perturbations and to the ambient large-scale neutral wind speed

* This term accounts for 80-100% of the SST-induced stress
response

SST-induced stress response is larger relative to the wind
speed response wherever and whenever the ambient
large-scale neutral wind speed is larger



Analytical Relationship Between Time-

Averaged Spatially High-Pass Filtered Neutral

Wind Speed and Stress Magnitude

H/ ~ o (CLO -+ 2()07 -+ 300? V)

* Arises from temporal neutral wind speed
variability on time scales shorter than
period of time averaging, which here is one
month

* This term is also related Iinearly}othe/v
perturbation SST in mid-latitudes

» Consistent with the findings of Sampe anc
Xie (BAMS, 2007) — transient high wind
events found more frequently over warm
SST perturbations in mid-latitudes and are
likely a dominant contributor to this term
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Summary

Both neutral wind speed and wind stress magnitude are stronger over warm
SST perturbations and weaker over cool SST perturbations

Three perplexing observations that at first were difficult to explain

— The neutral wind speed and wind stress magnitude are observed to be
related linearly to the perturbation SST despite the nonlinear
relationship between neutral winds and stress

— Stress coupling coefficients not well related to neutral wind speed
coupling coefficients

— There is a large seasonal pulsing in the SST-induced wind stress
magnitude field that is not mirrored in the SST-induced neutral wind
speed field

Ambient large-scale neutral wind speed modulates the SST-induced wind
stress response relative to that of the neutral wind speed

— SST-induced wind stress perturbations are stronger relative to those of
neutral wind speed wherever and whenever the ambient large-scale
neutral wind speed is stronger

— This accounts for seasonal and geographical variability of the SST-
induced wind stress response relative to that of wind speed
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Temporal Variability of QuIkSCAT Wind
Stress Magnitude Response to SST
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January Mean 2003 2007 kaSCAT Spatlally ngh Pass Filtered Wind Stress Mag
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Comparing 10-m Neutral and Actual

Wind Speed Relative to Surface Ocean
Clirranta

(m/s)

10 12
10-m Equivalent Neutral Stability Wind Speed (m/s)

 Computed using similarity theory-based state-of-the-art COARE 3.0
bulk flux algorithm (Fairall et al. 2003) using methodology of Liu and
Tang (1996)

« According to similarity theory, difference between 10-m neutral and
actual wind speed:

— Is very significant in extremely stable and low neutral wind speed
conditions

— Decreases very rapidly for increasing wind speed in both stable and
unstable conditions

— Is relatively small in unstable conditions for all neutral wind speeds
— Differences are very sensitive to addition of wave parameterization in



Time Series of Coupling Coefficients
Eastern Tropical Pacific

- Minima in a_ and q,,
over the eastern
tropical Pacific during
January-March
coincides with the
annual collapse of the
cold tongue
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SST gradients are
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Analytical Relationship Between Time-Averaged
Spatially High-Pass Filtered Surface Wind Speed
and Stress Magnitude
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January Spatially High-Pass Filtered Wind Stress Magnltude (2003 2007)

January Spatially High— Pass Filtered Wind Speed (2003-2007)
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Statistical Relationships Between
Perturbations of Neutral Wind Speed,
- \WiNg-Stress-Magnitude and SST
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Perturbation Neutral Wind Speed-SST
Cross-Correlation as a Function of
Averaging Period
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e Cross-correlation between perturbation neutral
wind speed and SST increases as period of
averaging increases, up to about 6 weeks.
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Seasonal Variations of SST-Induced Wind Stress Magn

itude and Neutral Wind

Speed Perturbations

January Spatially High-Pass Flltered Wind Stress Magnitude (2003- 2007)
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5-yr Average Spatially High-Pass
Filtered QUIKSCAT 10-m Neutral Wind
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5-yr Average Spatially High-Pass Filtered
QuikSCAT 10-m Neutral Wind Speed and
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5-yr Average QuikSCAT 10-m Neutral Wind
Speed

Spatially High-Pass Filtered 5-yr Average Wind Speed (June 2002 - August 2007)
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Analytical Relationship Between Time-
Averaged Spatially High-Pass Filtered
Neutral Wind Speed and Stress
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Comparing 10-m Neutral and Actual

Wind Speed Relative to Surface Ocean
Clirranta

RH=75%, Ta=12°C RH=75%,|Ta=18°C 1o RH=75%, Ta=24°C

10 12
10-m Equivalent Neutral Stability Wind Speed (m/s)

 Computed using similarity theory-based state-of-the-art COARE 3.0
bulk flux algorithm (Fairall et al. 2003) using methodology of Liu and
Tang (1996)

« According to similarity theory, difference between 10-m neutral and
actual wind speed:

— Is very significant in extremely stable and low neutral wind speed
conditions

— Decreases very rapidly for increasing wind speed in both stable and
unstable conditions

— Is relatively small in unstable conditions for all neutral wind speeds
— Differences are very sensitive to addition of wave parameterization in



Comparing 10-m Neutral and Actual
Wind Speed Relatlve to Surface Ocean
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SEw
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After Liu et al. (2007; JCLI)

° 5 7 8 °  (RH=75%, Ta=18<)
Wind Speed

(m/s)
o Computed using similarity theory-based state-of-the-art

COARE 3.0 bulk flux algorithm (Fairall et al. 2003) using
methodology of Liu and Tang (1996)

e For a 10-m neutral wind speed of 7 m/s, range of actual
10-m wind speed is 6.7-7.4 m/s for an air-sea
temperature difference of +/- 2TC
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