Studying Decadal Climate Variability Using Satellite Scatterometer Data

Tong Lee

Jet propulsion Laboratory, California Institute of Technology

SOI & PDO indices

showing phase change of decadal signals at the end of the 20th century

Observed SST & SSH exhibit opposite decadal tendencies before & after year 2000 over much of Indo-Pacific domain

Year

Opposite trends in large-scale wind stress curl (WSC) over much of Indo-Pacific before & after 2000

Trade winds affect climate variability

by forcing meridional ocean circulations (MOCs) to redistribute heat between tropics & subtropics, which modulate ocean-atmosphere coupling

Satellite data critical to the study of these MOCs and heat transports: Scatterometer data: divergence of warm surface water (Ekman flow) Altimeter data: convergence of cold subsurface water (geostrophic flow)

Decadal variation of trade winds & climate variability Lee and McPhaden (2008)

Opposite changes of SSH differences between E & W coasts: thus opposite roles of Pacific & IO meridional geostrophic flow (lower branch of MOCs)

Off-equatorial wind stress curl cause anomalous gyres in western Pacific, resulting in counteracting geostropic flows in western boundary currents & interior (Lee and Fukumori 2003)

Scatterometer & altimeter obs. brought new insight about MOC structure & maintenance mechanism of tropical heat content

Old picture

- 2-D (y-z) meridional transport stream function masks out counteracting roles of interior & WB flows;
- existing in-situ obs system do not cover WB flows adequately.

Scatterometer & altimeter data only cover the past 16 years are

Scatterometer & altimeter data only cover the past 16 years, are the anti-correlated Dec. Var. between tropical Pacific & South Indian Oceans ubiquitous features in general?

Anti-correlated decadal variability in NCEP's trade winds in tropical Pacific (4°S-4°N) & Indian Ocean (9°-15°S)

Atlantic Meridional Overturning Circulation (AMOC) and Climate

AMOC helps maintain a warmer climate in N. America & Europe.

Bryden et al. (2005): Slowing of the AMOC

Table 1	Meridional	transport	in depth	classes	across	25° N
---------	------------	-----------	----------	---------	--------	-------

	1957	1981	1992	1998	2004
Shallower than 1,000 m depth	From NCEP				
Gulf Stream and Ekman Mid-ocean geostrophic	+35.6 -12.7	+35.6 -16.9	+35.6 -16.2	+37.6 -21.5	+37.6 -22.8
Total shallower than 1,000 m	+22.9	+18.7	+19.4	+16.1	+14.8
1,000-3,000 m 3,000-5,000 m Deeper than 5,000 m	-10.5 -14.8 +2.4	-9.0 -11.8 +2.1	-10.2 -10.4 +1.2	-12.2 -6.1 +2.2	-10.4 -6.9 +2.5

Values of meridional transport are given in Sverdrups. Positive transports are northward.

QuikSCAT wind – important element for monitoring the Atlantic MOC

Bias between sensors limit the scope for studying dec & longer variability/changes

QuikSCAT-ERS2 τ_x (2000 mean) (N/m²)

Summary

- Scatterometer data have demonstrated its potential in studying decadal variability.
- Sustained and consistent scat. measurements are critical to further the understanding of decadal and longer variability – bias significantly hampers progress.
- Accuracy needed to resolve multi-decadal and longer time scales variability is more stringent than that of dec. var.