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Introduction

Ocean Surface Currents Analyses Realtime processing system (OSCAR) is a
satellite-derived surface current database based on a combination of quasi-steady
geostrophic and locally wind-driven dynamics (Bonjean and Lagerloef, 2002).

The geostrophic term is computed from the
gradient of surface topography fields
(AVISO/CLS).

Wind-driven velocity components are computed
from an Ekman/Stommel formulation with variable
viscosity using QuikSCAT winds (FSU/COAPS)

with a thermal wind adjustment using Reynolds
SST data.

Data available at http://www.oscar.noaa.gov and
http://www.aoml.noaa.gov/phod/dac/drifter_climatology.html.
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Introduction

Climate application of OSCAR

Examine the performance of the wind-driven
component of OSCAR with:

Wind speed
Temporal wind resolution

Main area for improvement
Time dependent term: near inertial oscillations

OVWST Workshop Aug 19-21, 2009 – p. 3



Surface currents and ENSO indices
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Surface current anomalies in the tropical Pacific typically lead SST anomalies by
several months.
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High Wind Speed Performance
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High Wind Speed Performance
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High Wind Speed Performance
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Relative Error
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1-Day vs 5-Day Winds

1-Day 5-Day
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Relative Error
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Missing Physics: Near-Inertial Oscillations

OSCAR is a quasi-steady solution.

Ekman currents are generated by vertical gradients in the wind-generated
surface stress.

∂uE

∂t
+ ifuE = ∂τ

∂z
.

Integrate over the mixed layer depth (slab layer) gives the solution

UE = −i τ
ρ
(1 − exp(−ift)).

Steady current to the right of the wind and an anticyclonic inertial oscillation.

Pure inertial oscillations have zero vertical group velocity and infinite horizontal
extent. Propagation via:

β effect = variation in Coriolis with latitude causes de-correlation and finite
horizontal extent

interactions with eddies

small-scale storms.
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Example: Near-Inertial Oscillations

Mooring data (Ocean Storms; Dohan and Davis 2009, JPO). Hourly winds. Two
storms similar magnitude.

Strong near-inertial oscillations in second storm due to resonant turning of wind
direction, lasting well after strong winds.
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Significance to Climate
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Mixing

Shear-driven mixing within the upper thermocline.

The major source of internal waves in the deep ocean from the surface
mixed layer.

Wind-driven momentum transfer to the interior ocean.
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Near-Inertial Oscillations: Wind Resolution

Example of winds on a daily grid.
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Summary

High Winds and OSCAR

OSCAR performance improves with higher winds.

Inconclusive whether there is a very high-wind degradation seen in OSCAR.

Resolution in time

1-day winds show improved performance over 5-day

High enough temporal resolution together with more dynamics than steady
Ekman will be necessary to capture near-inertial oscillations (NIO).

Resolution in space

Currents will improve with higher spatial resolution. Also necessary
component of NIO.

Other sources of drifter/OSCAR divergence

Geostrophic velocity subtracted from drifters does not include filamentary
features.

Drifter slip in high winds.

Eddy viscosity parameterization, constant in vertical.
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Energy Budgets

Munk and Wunsch (1998) estimate 2.1 TW of mixing is necessary to maintain the
abyssal stratification. Wunsch and Ferrari (2004): 0.6 TW from winds, 0.9 from
tides.

Estimates of the power input from the wind from NCEP winds using a slab model
is around 0.5 TW (Alford, 2003).

GCM studies indicate smaller values of 0.1 TW (Furuichi et al., 2008,Zhai et al.,
2009).

Primitive equation models find seven times more dissipation when moving from
daily wind forcing to 3 hour wind forcing (Klein et al. 2004).

A big missing link is a detailed knowledge of the wind structure

ocean circulation models

abyssal stratification

climate predictions.
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