TropSat

The TropSat Mission: An Observatory for Mesoscale Convective System Processes in the Global Tropics

Ernesto Rodriguez David G. Long Ralph Milliff

19 Nov. 2008

The Mesoscale Convective System (MCS) life cycle

Rain Climatology

TropSat

11.19.08

• Daily rainfall climatology for a composite year for tropical ocean basins from the Xie-Arkin climatology

Xie, P-P., and P.A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. *J. Clim.*, **9**, 840-858.

Multi-Parametric MCS Processes

Convergence, rainfall, precipitable water lag-regression (TOGA-COARE) Mapes, B., 2006.

TropSat

MCS signals in an evolving MJO

11.19.08

- Diurnal resolution of wind forcing and wind-modulated fluxes
- Diurnal forcing sets seasonal upper ocean heat content
- Diurnal tropical SST resolution through clouds (i.e. MW SST)

Large-Eddy Simulation: surface heat anomaly subduction

Adapted from Large and Gent (1999); see Milliff, R.F., M.H. Freilich, W.T. Liu, R. Atlas, W.G. Large, 2001: "Global ocean surface vector wind observations from space", in Observing the Oceans in the 21st Century, C.J. Koblinsky and N.R. Smith (Eds.) GODAE Project Office, Bureau of Meteorology, Melbourne. 102-119.

TropSat Observatory Concept

TropSat

- Scanning scatterometer/radiometer
 - Measure near-surface winds, rain, atmospheric water vapor at ~ 10 km spatial resolution
 - Dual band scatterometer: wind & rain
 - Multichannel radiometer: water vapor & rain
 - 100 min sampling, 6-9 contiguous samples of equatorial band
 - Low inclination angle orbit, wide swath
 - Minimum technological risk

One possible TropSat configuration

Observation Requirements (Preliminary)

• Orbit

- 750 km altitude
- 12 deg inclination angle
- 1200 km swath width

• Spatial resolution

- 10 km
- Wind speed:
 - dynamic range: 1-30 m/s with a goal of 1-50 m/s
 - RMS speed accuracy: 10 % or 2 m/s which ever is greater
 - residual* rain-induced wind speed error: < 1 m/s

• Wind direction:

- RMS direction accuracy of selected ambiguity: 20 deg
- residual* rain-induced wind direction error: < 10 deg

• Surface rain:

- Dynamic range: 1-20 mm/hr
- RMS accuracy: 2 mm/hr
- Integrated water vapor:
 - Dynamic range: TBD
 - RMS accuracy: TBD

TropSat will support and be augmented by existing/planned sensors

TropSat

	R	Backup Slides	TropSat
atory			
Observ			
ropSat			
Ι			
THE REAL PROPERTY OF THE REAL			11.19.08

Baseline System Description

TropSat

Baseline TropSat Instrument Parameters (preliminary) Scatterometer Transmitter (2 channels) Nominal Frequency:

Nominal Frequency:	13.4 (Ku-band) and 5.4 (C-band) GHz
Peak Transmit Power:	100 W and 60 W
Pulse Length:	200 us to 240 us (TBD)
Pulse Repetition Frequency (PRF):	3 to 4 kHz (TBD)
Duty Cycle:	~65-80 % (TBD)
Signal chirp bandwidth	250 kHz
• Scatterometer Receiver (2 channels)	
Center Frequency:	13.4 and 5.4 GHz
Receiver Noise Temp (Tsys):	800K / 800 K
Dynamic Range:	50 dB
Bandwidth:	10 MHz (TBD)
Radiometer Channels (4 total)	
Center Frequencies:	6.9 V/H, 22V, and 37V GHz
Radiometric sensitivity ΔT :	0.5 K (TBD)
Bandwidth:	100 MHz (TBD)
• Antenna (active/passive)	
Reflector Size:	1.1 m
Rotation rate:	18 rpm
Pointing Stability:	0.1°
Scatterometer Channels (dual-frequency/dual-	beam)
Center frequency:	13.4 and 5.4 GHz
Gain:	~40 and ~32 dBi
Half Power Beamwidth (HPBW):	~1.25° and ~3.18°
Off nadir pointing angles:	42° and 49°
Resulting incidence angles:	48° and 57.5°
Radiometer Channels (multi frequency/polariza	ation, single-beam)
Center frequency:	6.9 V/H, 22 V, 37 V
Half Power Beamwidth (HPBW):	(TBD) $\sim 3^{\circ}$, $\sim 1^{\circ}$ and $\sim 1^{\circ}$
Off nadir pointing angles:	49°
Resulting incidence angles:	57.5°
Efficiency:	90% (TBD)
Orbit (equatorial)	
Altitude:	750 km
Inclination angle:	12°
Eccentricity:	< 0.001
Argument of perigee:	(90°)

Achieving Resolution w/Small Antenna TropSat

- By proper instrument design and data collection, post-processing reconstruction/resolution enhancement techniques can be applied to slice observations to obtain nominally 10 km resolution
- Use ground-based processing to reconstruct surface backscatter at higher resolution
 - Technique is being used operationally by QuikSCAT
 - Also effective with SSM/I and AMSRE
- Sensitivity of backscatter to rain exploited to simultaneously estimate wind and rand
 - Different sensitivities of C- and Ku-band improve both wind and rain estimate performance
- Collocated radiometer provides multi-layer temperature

Early, D.S. and D.G. Long, 2001. Image Reconstruction and Enhanced Resolution Imaging from Irregular Samples, *IEEE Transactions on Geoscience and Remote Sensing*, Vol. 39, No. 2, pp. 291-302.

D.G. Long and D.L. Daum, Spatial Resolution Enhancement of SSM/I Data, *IEEE Transactions on Geoscience and Remote Sensing*, Vol. 36, No. 2, pp. 407-417, Mar. 1998.

TropSat Observatory

11.19.08

QuikSCAT Ultra High Resolution Simultaneous Wind/Rain (2.5 km) Rain

TropSat Observatory

TropSat

TropSat Observatory

A CONTRACT OF CONTRACT.

11.19.08

