

Status of GCOM and expectation for microwave scatterometer

Keiji Imaoka¹, Misako Kachi¹, Tamotsu Igarashi¹, Keizo Nakagawa¹, Naoto Ebuchi², Taikan Oki^{1,3}, and Haruhisa Shimoda^{1,4}

¹ Japan Aerospace Exploration Agency
² Institute of Low Temperature Science, Hokkaido University
³ Institute of Industrial Science, The University of Tokyo
⁴ Tokai University Research and Information Center

Ocean Vector Winds Science Team Meeting 2008 Seattle, U.S.A. November 19, 2008

JAXA Earth observation satellites

- Mission status
 - Modification of ADEOS-II/AMSR to Aqua.
 - Continuous observation over 6-years onboard NASA's EOS Aqua satellite.
 - Aqua will be maintained at least until 2011 according to the NASA senior review.
- Instrument characteristics
 - JAXA's passive microwave radiometer with high-spatial resolution and C-band capability.

Pre-launch AMSR-E in Tsukuba Space Center

Data distribution to the operational organization which performs fishery information service, sea route information, weather forecast management, etc. Continuous monitoring of the earth environment change and improvement of the mechanism understanding improvement of prediction accuracy of the environmental change (degree, area and impact), and contribution to the design of policy for taking measures against adaptation. 3

GCOM 1st generation

- 2 medium-sized satellite: GCOM-W and -C.
- 3 consecutive generations with 1 year overlaps for assuring long-term inter-calibrated data records.

Instrument	Advanced Microwave Scanning Radiometer-2	Instrument	Second-generation Global Imager
Orbit	Sun Synchronous orbit Altitude: 700km, Inclination: 98.2 deg.	Orbit	Sun Synchronous orbit Altitude: 798km, Inclination: 98.6 deg.
Size	5.1m (X) * 17.6m (Y) * 5.0m (Z) (on-orbit)	Size	4.6m (X) * 16.3m (Y) * 2.8m (Z)
Mass	1940kg	Mass	1950kg
Power	4050W @ EOL	Power	4250W @ EOL
Launch	JFY2011	Launch	JFY2013 (TBD)
Design Life	5-years	Design Life	5-years
Status	Phase-C	Status	Phase-A

AMSR2 instrument

Deployed

Stowed

- Deployable main reflector system with 2.0m diameter.
- Frequency channel set is identical to that of AMSR-E except 7.3GHz channel for RFI mitigation.
- Two-point external calibration with the improved HTS (hot-load).
- Deep-space maneuver will be considered to check the consistency between main reflector and CSM.

GCOM-W	AMSR2 Channel Set						
Orbit	Sun Synchronous with 699.6km altitude (over the equator)	Center Freq. [GHz]	Band width [MHz]	Polariz ation	Beam width [deg] (Ground res. [km])	Sampling interval [km]	
Launch	JFY2011	6.925/					
Design-Life	5-years	7.3	350	V and H	1.8 (35 x 62)	10	
Local time	13:30 LTAN	10.65	100		1.2 (24 x 42)		
Swath width	1450km	18.7 2	200		0.65 (14 x 22)	10	
Antenna	2.0m offset parabola	23.8	400		0.75 (15 x 26)		
		36.5	1000		0.35 (7 x 12)		
Incidence angle	Nominal 55 degree	89.0	3000		0.15 (3 x 5)	5	

5

SGLI instrument

6

GCOM-C SGLI characteristics (baseline of GCOM-C1 BBM design)							
Orbit (TBD)	Sun-synchronous (descending local time: 10:30) Altitude: 798km, Inclination: 98.6deg						
Launch Date	Jan. 2013 (HII-A)						
Mission Life	Mission Life 5 years (3 satellites; total 13 years)						
Scan Push-broom electric scan (VNR: VN & P) Wisk-broom mechanical scan (IRS: SW & T)							
Scan width	1150km cross track (VNR: VN & P)Mul1400km cross track (IRS: SW & T)obs						
Digitalization	12bit 670nm						
Polarization	3 polarization angles for P 865nm						
Along track direction	Nadir for VN, SW and T, +45 deg and -45 deg for P						
On-board calibration VN: Solar diffuser, Internal lamp (PD), Lunar by pitch maneuvers, and dark current by masked pixels and nighttime obs. SW: Solar diffuser, Internal lamp, Lunar, and dark current by deep space window T: Black body and dark current by deep space window All: Electric calibration							

• The SGLI features are finer spatial resolution (250m (VNI) and 500m (T)) and polarization/along-track slant view channels (P), which will improve land, coastal, and aerosol observations.

	SGLI channels								
		λ	Δλ	L _{std}	Lmax	SNR at Lstd	IFOV		
	СН	VN, P, S T: J	N, Ρ, SW: nm Τ: μm		N, P: ²/sr/μm Kelvin	VN, P, SW: - T: NE∆T	т		
	VN1	380	10	60	210	250	250		
	VN2	412	10	75	250	400	250		
	VN3	443	10	64	400	300	250		
	VN4	490	10	<u>53</u>	120	400	250		
	VN5	530	20	41	350	250	250		
	VN6	565	20	33	90	400	250		
	VN7	670	10	23	62	400	250		
\rightarrow	VN8	670	20	25	210	250	250		
	VN9	763	8	40	350	400	1000		
	VN10	865	20	8	30	400	250		
	VN11	865	20	30	300	200	250		
\rightarrow	P1	670	20	25	250	250	1000		
\rightarrow	P2	865	20	30	300	250	1000		
	SW1	1050	20	57	248	500	1000		
	SW2	1380	20	8	103	150	1000		
	SW3	1640	200	3	50	57	250		
	SW4	2210	50	1.9	20	211(TBD)	1000		
	T1	10.8	0.7	300	340	0.2	500		
	T2	12.0	0.7	300	340	0.2	500		

- GCOM-W1
 - System PDR was over in March.
 - Engineering model tests are performed:
 - System Structure Model Test (in July. - Nov. 2008)
 - System Thermal Model Test (in Feb. 2009)
 - System Electrical Mosel Test (in Sep.2008 – Jan. 2009)
 - AMSR2 CDR (Part 1) was finished in July.
 - AMSR2 CDR (Part 2) will be held about Data Processing Unit in January, 2009.

GCOM-W1 STM

GCOM-C1

- SDR (System Definition Review) of GCOM-C1 was over in December last year.
- The proto-type test of SGLI was over in September.
- The GCOM-C1 project started in October. GCOM-C1 is developed together with GCOM-W1 by the GCOM Project Team.
- JAXA is requiring the GCOM-C1 Phase B/C budget in JFY 2009.
- Ground system of GCOM-W1
 - The SDR of the GCOM-W1 ground system was held in March.
 - The RFP of GCOM-W1 ground system had been submitted to the industry and the contractors was selected in October. The preliminary design has started.

Japanese Fiscal Year	FY2006	FY2007	FY2008	FY2009	FY2010	FY2011	FY2012	FY2013
	GCOM-W1 Project start							
Milestone			ĠCOM-C1 Proje		start	GCOM-W1 Launch		GCOM-C1 Launch (TBL
		SDR	PDR	▲ CDR				
GCOM-W1	Phase-A	Phase-B	Phase-C		Phase-D			
		▲ SD	R		PDR	CDI	 R	
GCOM-C1	Pre-Phase-A	Pha	se-A	Phase-B	Phase	-C	Phase-I	
				(*) Japane:	se Fiscal Ye	ar starts in	April and er	ds in March

(*) Japanese Fiscal Year starts in April and ends in March.

Present

GCOM-W2: Phase-A needs to be started for FY2015 launch 9

- Ongoing science discussions
 - Sensor combination
 - Microwave scatterometer
 - Enhancement of AMSR2 instrument
 - Possible requirements include:
 - High-frequency channels up to 200GHz for snow detection
 - Enhancement of spatial resolution (larger antenna aperture)
 - Temperature/Vapor sounding capability

Continuity of scatterometer

- Long-term continuity of scatterometer from ERS-1/AMI in 1991.
- Afternoon scatterometer on GCOM-W2 will increase time resolution and data coverage together with METOP observations.
- Scatterometer is valuable in operational use.

Synergism of SeaWinds and AMSR (N.Ebuchi and T.Liu).

Sensor-level synergy

- SeaWinds : Rain flagging and correction.
- AMSR : Improving Tb model as a function of wind vector.
- Cross validation, Active/Passive synergy

Science-level synergy

- Ocean surface heat flux : needs simultaneous observation.
- Simultaneous measurements of water vapor, SST, precipitation, and sea surface winds are effective for investigating various time-space scale phenomenon (MJO, typhoon, monsoon, ENSO, water-energy cycle, ocean circulation in surface mixed layer).
- Cryospheric and land studies.

Annual mean (a) divergence of moisture transport integrated over the depth of the atmosphere, and (b) evaporationprecipitation. Evaporation and precipitation were estimated independently from TRMM data. Moisture transport was estimated from a combination of TRMM and QuikSCAT data. From Xie and Liu (2005).

Potential Synergy (cont'd)

N.Ebuchi and T.Liu (2005)

Future enhancements

- GCOM-W2 will be a unique opportunity of scatterometer and radiometer combination after Seasat and ADEOS-II, even with the current capabilities of SeaWinds and AMSR.
- By the future enhancements including SeaWinds follow-on's C-band capability, all-weather type ocean observations using active/passive microwave system will be obtained.
- C-band active/passive applications are also expected in land and cryosphere.

AQUA/AMSR-ESM Jun 01, 2003 ASC/DES

- Overview of the GCOM program and status of the GCOM-W1 and -C1 were presented.
- Discussion of GCOM-W2 science and sensor system is ongoing. GCOM science community in Japan has strong interest in having the microwave scatterometer on GCOM-W2.
- Active/passive combination on GCOM-W2 will become a very unique opportunity. Synergism of microwave scatterometer and radiometer is gaining importance and producing scientific results in air-sea interaction and water cycle studies.
- Continuity of microwave scatterometer is important both for climate research and operational applications. GCOM science will increase its significance with scatterometer.