QuikSCAT Follow-On Efforts at NOAA

P. S. Chang and Z. Jelenak NOAA/NESDIS/StAR

E. Rodríguez and R. Gaston Jet Propulsion Laboratory California Institute of Technology

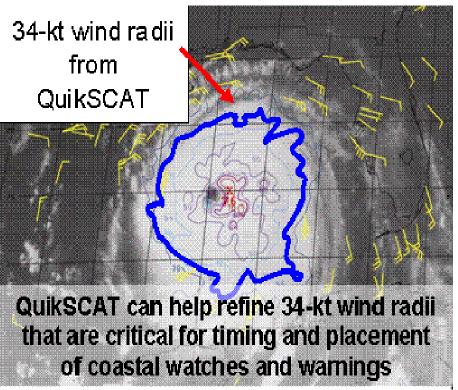
NASA Oean Vector Winds Science Team Meeting Seattle, WA November 19-21, 2008

- The Importance
- The Goal
- The Requirements
- The Status
- The Next Steps
- The Outlook

QuikSCAT OSVW data has significant positive impacts on marine warning and forecasting capabilities

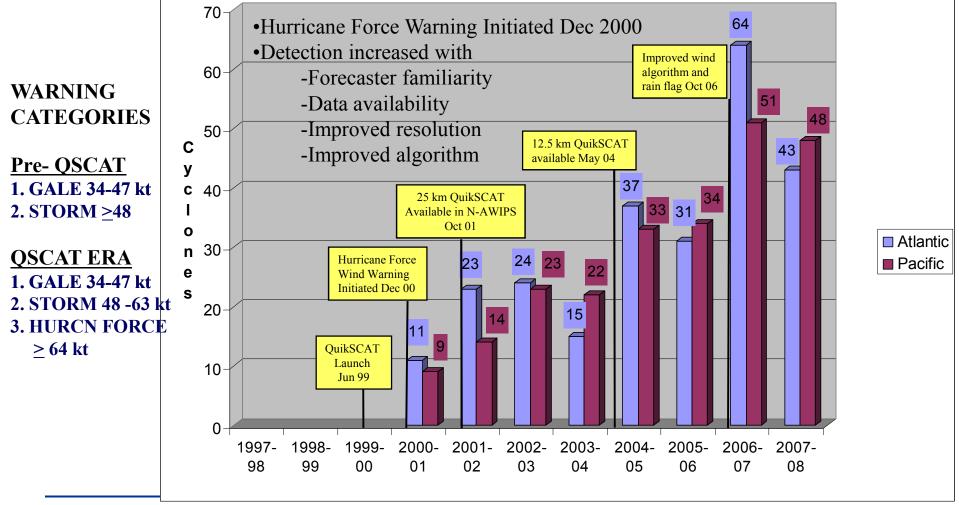
Impact of QuikSCAT on Tropical Cyclone Forecasts and Warnings

Tropical Prediction Center/National Hurricane Center (TPC/NHC), Central Pacific Hurricane Center (CPHC), and Joint Typhoon Warning Center (JTWC) provide analyses, forecasts and warnings of tropical cyclones. QuikSCAT winds are used to:

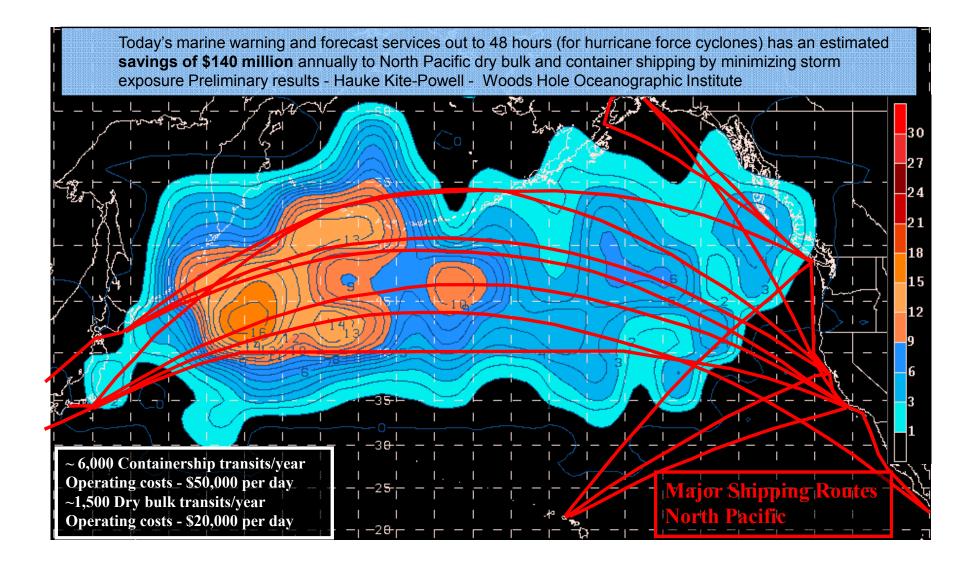

•Estimate intensity (maximum wind) •Especially for tropical storms, but not for most hurricanes (typhoons)

•Improved analysis of 34 kt and 50 kt wind radii

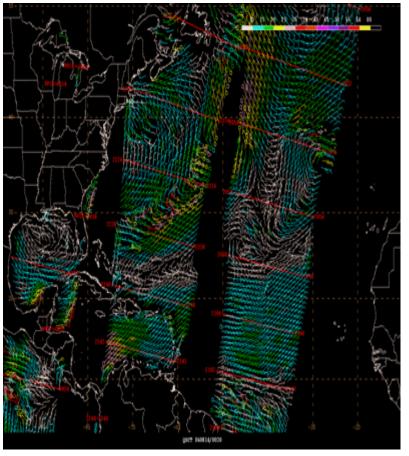
Critical for ship avoidanceRefine coastal warning areas


•Detect and locate surface circulation centers

• Incipient cyclones (especially critical for Pacific Ocean where operations are not supported by aircraft)



Extratropical Cyclones with Hurricane Force Winds Detected using QuikSCAT


Cumulative number of extratropical cyclones observed (contoured) with hurricane force winds for the years 2000 - 2007Hurricane Force Winds Occur Across the Sea Lanes

QuikSCAT Limitations

- Long intervals between repeat passes at most two passes per day at low and midlatitudes
- Gaps between swaths approach 1000 km in deep Tropics
- Sensitive to rain → potential contamination in tropical cyclones and elsewhere
- Cannot measure maximum wind in most hurricanes (typhoons)
 - Resolution, instrument design, rain effects
- Directional uncertainty limits ability to identify or locate tropical cyclone center
 - Subjective analysis by forecaster required
- No data available within 30 km of coastlines and islands

A Sustained OSVW Capability

Recent Events

- NOAA OSVW workshop (June 2006)
- NRC Decadal Survey (January 2007)
- The lack of a QuikSCAT Follow-On (QFO) hurricane controversy (Summer 2007)
- QFO Mission studies Initiated (June 2007)

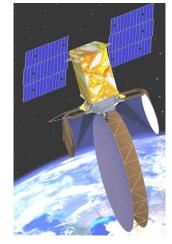
The Requirements

- All-weather retrievals (i.e. accurate retrievals in rain)
- Accurately measure 10-m 1-min sustained wind in 0–165 kt range (up to category 5 hurricane)
- Reduce time between passes over a particular point to every 6 h (1– 3 h goal)
- Reduce time from measurement to availability to 45–60 min (15 min goal)
- **2.5-km grid spacing** between wind vector retrievals

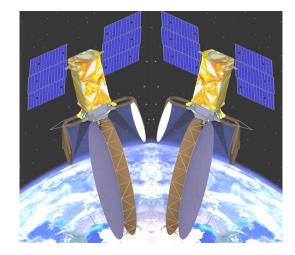
(1 km goal)

- Measurements within 2.5 km of the coast (1 km goal)
- Data must be delivered into the operational environment (N-AWIPS, AWIPS, etc.)
- Product documentation / tutorial / training

http://manati.orbit.nesdis.noaa.gov/SVW_nextgen/SVW_workshop_report_final.pdf



In June 2007, NOAA asked JPL to conduct a study to provide the technical readiness, cost, and impact to NOAA of:

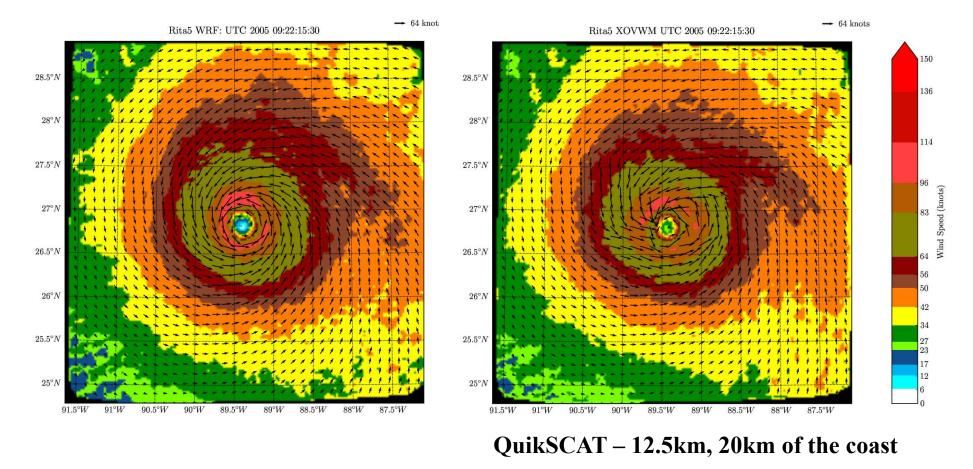

- 1. A QuikSCAT equivalent re-flight
- 2. An Extended Ocean Vector Winds Mission (XOVWM)
- 3. A constellation (2) of XOVWM instruments

1.QuikSCAT Replacement

2. XOVWM

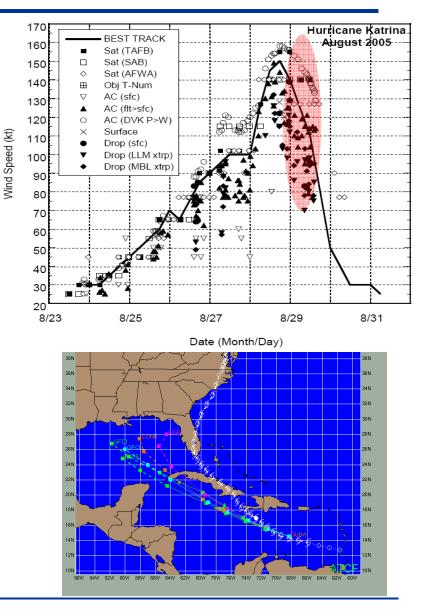
3. XOVWM Constellation

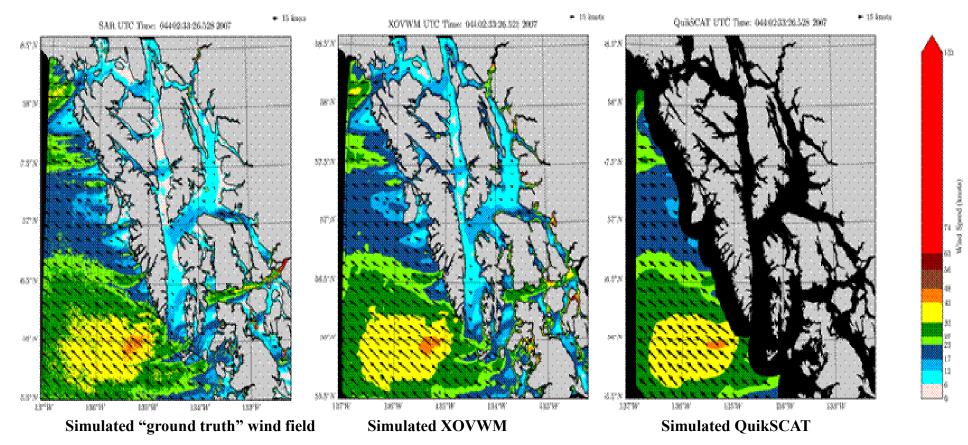
• Areas of Emphasis:


- Tropical cyclones (Katrina and Rita)
- Extra-tropical cyclones (Helene)
- Coastal winds (dual low level jets off of Cape Blanco and Cape Mendocino, high wind events along the Alaska coast)

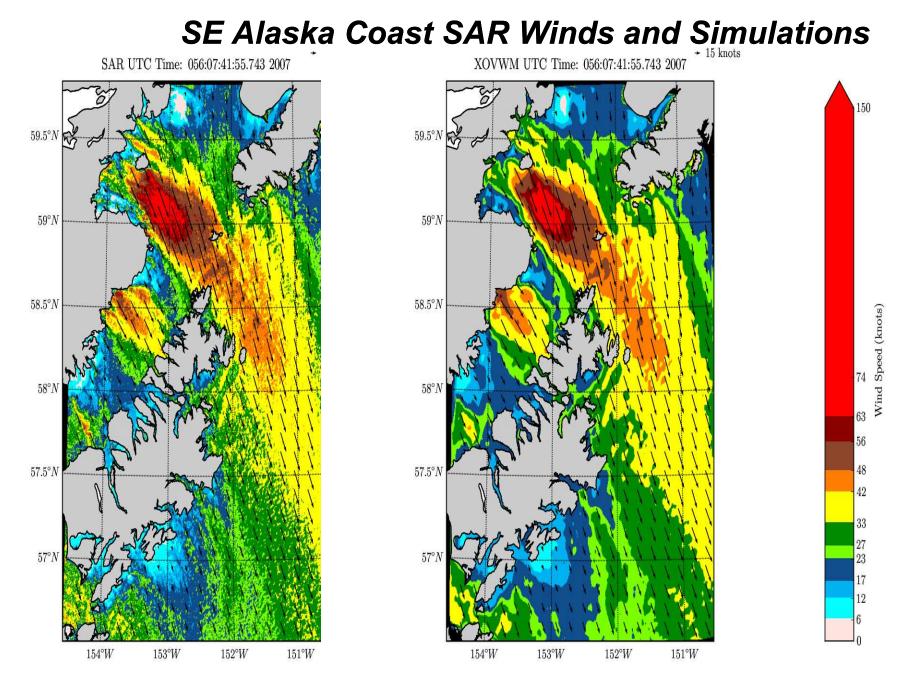
• Study Participants:

- JPL: measurement simulations, algorithm development
- NOAA (NHC, OPC, CPHC, WFO Alaska, Pacific, Western, Southern and Central Regions, AOML, NESDIS): provide impact assessments based on data simulations


XOVWM – 5km, 5km of the coast


Increased resolution and decreased sensitivity to rain will allow for:

- More reliable estimates of tropical cyclone intensity through all stages of development → tropical depressions, tropical storms, hurricanes and potentially major hurricanes
- Improved analysis of tropical cyclone wind field structure (34, 50, and 64 kt radii) → more refined watch/warning areas for the coast
- More accurate tracking of tropical cyclone centers and earlier identification of developing TCs → more accurate initial motion estimates as input into model guidance
- More accurate maximum wind estimates of extratropical cyclones and distribution of all warning categories



Coastal Benefits of an Enhanced XOVWM Capability

Coastal winds from XOVWM will allow for:

- Accurate OSVW data much closer to the coast (2.5–5 km) than is currently available from QuikSCAT (30 km)
- More accurate and meaningful coastal forecasts, warnings and advisories
- Significantly better definition of coastal wind features such as low-level jets
- Significantly better definition of ocean forcing for areas affected by phenomena such as upwelling

SAR Winds + NOGAPS Directions

QOKSYM Ritke Retrievals

User Impact Study -Summary

User Impact Study Report February 19, 2008

- OSVW data are identified as critical data needed for weather forecast and warning products for Local Forecasts and Warnings and Marine Weather Programs
- To maintain improvements in operational weather forecasting and warning applications resulting from QuikSCAT OSVW, continuity of OSVW data at a level equivalent to or better than QuikSCAT is required
- XOVWM would greatly enhance the detection and warning capability across a wide range of weather phenomena for nearly all of the coastal, offshore, high seas, and Great Lakes areas of responsibilities.
 Even a single XOVWM would be a major step toward meeting critical aspects of OSVW operational requirements compared to a QuikSCAT-equivalent solution

http://manati.orbit.nesdis.noaa.gov/SVW_nextgen/QFO_user_impact_study_final.pdf

- NOAA conducted Analysis of Alternatives Study Dec '07- Jan '08. AoA working group recommendations:
 - Recommend establishing a sustained operational satellite OSVW capability mission
 - XOVWM satellite capability is preferred solution with structured fall-back plan to QuikSCAT capability if technical or cost issues arise
- QFO and AoA studies presented to NOSC in Feb '08
 - QuikSCAT data have had a significant impact on NOAA operational analyses and forecasts
 - There is broad NOSC support for an improved all-weather capability
 - However, the NOSC believes that the cost as presently formulated is beyond NOAA's means at this time
 - NOSC recommended modest level of funding in FY10 to further pursue OSVW program with specific guidance to **NESDIS to seek partnership arrangements** that would have the potential to significantly reduce the cost and risk to NOAA of implementing such an improved capability

• JAXA GCOM collaboration opportunity

- Promising potential to realize a QFO mission
- Two meetings have been held between NOAA, JAXA and JPL
 - GCOM-W2 can accommodate a system with OSVW capabilities between XOVWM and QuikSCAT
 - NOAA and JAXA have drafted a letter of intent
- NESDIS will be conducting user impact assessments of the GCOM-W2 scatterometer capability
- NOAA and JAXA are pursuing this collaboration in their respective budget processes

• Significant progress has been made toward justifying a sustained satellite OSVW capability, but the road ahead is still not certain

• The QuikSCAT Conundrum

- QuikSCAT OSVW data are used operationally and have yielded significant positive impacts in NOAA's mission, but QuikSCAT is viewed as a research mission when it comes to continuity of operations.
- Satellite OSVW measurement capability was given to NOAA in the NRC
 Decadal Survey and is now considered an operational mission by NASA HQ.
- NOAA OSVW requirements actually point toward a more advanced capability than QuikSCAT.
- Continuity of satellite OSVW data is desired by both the operational and research communities.
- Bottom line: A QuikSCAT follow-on capability needs to be supported by both the operational and science communities to succeed.