Indian Ocean Intraseasonal SST Variability During Boreal Summer MJO Versus Submonthly Forcing and Processes JGR - Oceans, under revision

Benét Duncan & Weiqing Han Dept of Atm & Oceanic Sciences University of Colorado, Boulder November 20, 2008

Outline:

- 1. Motivation/Importance
- 2. Background:
 - Goals & Procedure
 - Model
 - -Data
- 3. Results
- 4. Summary & Conclusion

Motivation & Importance:

- Lack of current research (submonthly)/consensus (MJO)
- More knowledge about these processes is important:

- Atmospheric feedback
- Benefit society in India
 - 80% rainfall during summer monsoon
 → crops, flooding

Webster & Hoyos, 2004)

BBC News, 2005: http://news.bbc.co.uk/2/hi/south_asia/4733897.stm

Goals & Procedure:

Use a model/observation experiment to:

- 1. Assess model validity compare model SST with data
- 2. Study impact of submonthly & MJO events on SST

Use model runs to isolate processes that cause SST variability

Look at specific events & general timescales

If a process consistently dominates, then how & why?

The Model:

- HYbrid Coordinate Ocean Model (HYCOM)
 - OGCM with hybrid vertical coordinates, 18 layers
 - Vertical Mixing: K-Profile Parameterization (Large et al. 1994)
 - Configured for Indian Ocean, horiz resolution 0.5°x0.5°
 - Model runs from 1 January 1998-November 2004
- Use a hierarchy of model experiments to isolate processes

Experiment Number:	Forcings used:	Difference Solution:	Isolates Ocean Response To:
MR	All 3-day mean fields: winds, air temp, humidity, fluxes, precipitation	MR-EXP1	Subseasonal ISOs
		MR-EXP2	Submonthly ISOs
EXP 1	Lowpassed 105 days	EXP2-EXP1	30-90 day MJO Events
EXP 2	Lowpassed 30 days	MR-EXP3	ISO wind stress
EXP 3	Lowpassed wind stress	MR-EXP4	ISO wind stress and speed
EXP 4	Lowpassed wind stress and speed	EXP3-EXP4	ISO wind speed
EXP 5	Lowpassed shortwave flux	MR-EXP5	ISO shortwave flux
EXP 6	Lowpassed precipitation	MR-EXP6	ISO precipitation

Data Used:

- For model forcing:
 - QuickSCAT 3-day winds & derived wind stress (*Tang & Liu*)
 - ISCCP net shortwave and longwave fluxes
 - CMAP precipitation
 - ERA-40 air temperature & specific humidity
 - Surface and latent heat fluxes from bulk formulas (Kara et al. 2000)
- For model-data comparisons & further study:
 - QuickSCAT 3-day 10 meter winds
 - NOAA Satellite-observed OLR
 - TRMM SST
 - ARGO & TRITON float data

Results: Model Validity

Time series of 30-90 & 10-30 day SST averaged over region 2 (the BOB) from 2000-2003

Thick line observed SST Dotted line modeled SST

Results: General Processes

Time series of 30-90d SST from forcings in BOB from 1999-2004 All forcings (top) and wind only (bottom).

Results: Composite vs. Specific MJO Event

Composite event (left) underestimates the MJO SST extremes seen in the specific strong event (right). Color scales for composite event are ½ those for the specific event.

Why is wind speed stronger than wind stress in the BOB?

Hmix due to Wind Speed

Turbulent Heat Flux!

Heat Flux due to Wind Speed (Turbulent Heat Flux)

c) Heat Flux due to Wind Speed

d) Heat Flux due to Wind Speed

-100-50, -25, -5.0 5.00 25.0 50.0 100, Wm⁻²

Why turbulent fluxes in the BOB? **Barrier layer & Thin mixed layer**

Summary & Conclusions:

- MJO composite can average out details
- Effects of Wind >> SW, Precipitation
 - Agrees with winter events (*Han et al* 2007) and with *Waliser et al* (2004) study of canonical summer ISOs
- Effects of Wind Speed ~ Wind Stress in East Eq IO
- Effects of Wind Speed > Wind Stress in the BOB & AS
 - Less so during submonthly events
- Turbulent Heat Flux > Entrainment in the BOB
 - Barrier Layer, Shallow mixed layer

Thank you! Any Questions?

Begin Bonus Slides...

Spectral Analysis: Qscat vs. ERA40

Figure 2: (a) Variance spectra of zonal wind stress τ^x , for QuickSCAT observations (thick solid line) and scaled ERA-40 reanalysis (thick dashed line) from 1 August 1999 – 31 December 2001, averaged over the western BOB (80-90°E, 4-15°N). The thin solid/dashed lines show the 90% significance level for each. (b) Same as Figure 2a, but for meridional wind stress τ^y . Units are Nm⁻².

Results - Model Validity:

Spectral Analysis of TRMM (solid line) vs. HYCOM MR (dashed line) SSTs, averaged over summers from 1999-2003, in the 3 regions of interest. Thin line is 90% confidence level for each.

Results – Submonthly Event:

- Wind speed & stress effects are closer in magnitude in all regions
 - Speed still slightly stronger than stress in the Arabian Sea and BOB

Hmix & Turb Flux Due to Wind Speed, Submonthly Event

c) Heot Flux due to Wind Speed

d) Heat Flux due to Wind Speed

0 25.0 m -100 -50, -25, -5.0 5.00 25.0 50.0 100, Wm⁻²

Wind stress and horizontal advection equations:

- QuickSCAT-derived wind stress:
 - Have wind speed $|\boldsymbol{V}|$ and direction $\boldsymbol{\theta}$
 - Wind vectors $\mathbf{V}=(u,v)$ are $u=|\mathbf{V}|\cos\theta \& v=|\mathbf{V}|\sin\theta$
 - Then, wind stress (τ) is: $\vec{\tau} = \rho_a C_D |\mathbf{V}| \mathbf{V}$ $\vec{\tau} = \tau_x + \tau_y$
- Wind stress curl is: $curl(\vec{\tau}) = \frac{\partial}{\partial x}(\tau_y) \frac{\partial}{\partial y}(\tau_x)$
- And Ekman pumping velocity (w_E) is: $w_E = \frac{\partial}{\partial x} (\frac{\tau^y}{f}) \frac{\partial}{\partial y} (\frac{\tau^x}{f})$
- Horizontal advection due to wind stress is calculated with:

$$\Delta T = -\left[u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} - \left(\overline{u}\frac{\partial \overline{T}}{\partial x} + \overline{v}\frac{\partial \overline{T}}{\partial y}\right)\right]\Delta t$$

 Where u, v, & T are zonal and merid currents & SST from MR and overbars indicate fields from EXP3