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Overview

1) QuikSCAT observations of SST influence on surface winds in
the California Current System (CCS).

 of ocean-atmosphere

2) COAMPS® 1-way coupled mode
interaction in the CCS. |

3) Sensitivity studies of 2-way couplin
fully coupled model of an idealized:
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QuikSCAT launch, June 19, 1999

Vandenberg, California



2-Month Average Wind Stress Magnitude and SST Contours

Northern Hemisphere ~ (Spatially High-Pass Filtered) g\ ccale structure is well
Summer QuikSCAT, July—August 2003 developed in the California
Current region during summer

High Pass Filtered Wind Stress and SST
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QuikSCAT 29-Day Average Centered on 5 September 2004

QuikSCAT resolution ~25 km (30-km gap near land)
Navy Coupled Ocean Data Assimilation (NCODA) SST grid resolution 9 km

d) 5 September 2004, QuikSCAT and COAMPS SST

T and SST VxT

5 N m—2 per 104 km
= 45 cm d-1 upwelling
at 40°N
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QuikSCAT 29-Day Average Centered on 5 September 2004

QuikSCAT resolution ~25 km (30-km gap near land)
Navy Coupled Ocean Data Assimilation (NCODA) SST grid resolution 9 km

d) 5 September 2004, QuikSCAT and COAMPS SST

T and SST VxT and Crosswind VT V-t and Downwind VT
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at 40°N

40N 40N I,

35N &q |
SN

35N

QA s
@ o

125W 120W 125W 120W
C.1.=0.03 N m2, Heavy contour = 0.12 N m™
r . B | | Cl=0.5° C/100 km
10 14 18 22 -4 0 4 8
SST (oC) . W:nd St:ess Clﬁrl N m—-2 per 1 04 km ) Wind XStress‘Diver?ence

- 4r T . 4 u

£ 3+ e E 3 u

8 2f . g 21 i

il § 28 oFl] ailll

;WHHH“: i i

z T s=1.82 S s=2.60 _|

:5'\.0 70%5 O%O 0%5 1.0 15'\.0 -0.5 O%O 0%5 1.0

Anomaly Crossw ind VT Anomaly Downwind VT

(°C per 100 km) (°C per 100 km)



COAMPS® 29-Day Average Centered on 5 September 2004

Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) grid resolution = 9 km
Navy Coupled Ocean Data Assimilation (NCODA) SST grid resolution 9 km

d) 5 September 2004, COAMPS
T and SST VxT and Crosswind VT V-1 and Downwind VT

5 N m=2 per 104 km
= 45 cm d-" upwelling
at 40°N
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COAMPS® Model Run with Two Different SST Boundary Conditions:
NCODA SST and NOAA/RTG SST

|[VSST]| (°C per 100 km) Vxt and Crosswind |[VSST]| Vet and Downwind |[VSST]|
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A “25-Cent” Empirical Coupled Model

(Xin et al., manuscript submitted to J. Phys. Oceanogr.)

» Based on the ROMS model for the ocean and QuikSCAT-based empirical
coupling coefficients for feedback effects on the ocean.

» The procedure consists of forcing the ocean model with large-scale winds and
then correcting the winds to include small-scale SST-induced perturbations.

* The results presented here are for an idealized rectangular domain with a
meridional eastern boundary.

- more sophisticated model runs are under development for a realistic
California Current System and Peru-Chile Current System.



Overview of Model Results

» The wind stress is initially -0.07 N m? and uniform equatorward.

» The cold upwelled water at the coast generates a crosswind SST gradient
that creates a nearshore positive wind stress curl.

* This reduces the coastal upwelling but creates nearshore Ekman pumping.

» The broadening of the nearshore upwelling reduces the intensity of the
alongshore SST front, thus slowing the development of baroclinic instability
and weakening the mesoscale eddy field.

* The nearshore positive wind stress curl also:
- causes the equatorward surface current to become shallower and weaker
- broadens and increases the transport of the poleward undercurrent by Sverdrup dynamics.

Average Wind Stress
Days 40-80

(negative southward)

-0.02f
initial

%% (uncoupled)

coupled, based on
1x, 2x and 0.5x the
-0.08} empirically observed
coupling

-0.06¢

T (Nm™)

000 300 200 100 0
x (km)



Wind Stress, Temperature and Alongshore Velocity

Uncoupled Coupled Difference
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Temporal Evolution of the Eddy Field

Sea-Surface Temperature, Day 60

Uncoupled Coupled
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Note the weaker cross-shore gradient of SST and the weaker
eddy kinetic energy in the coupled model run.
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Surface Vorticity (Normalized by ) on Day 150

y (km)

Uncoupled
800

600|

400

I .,
-1 0.5 0 05 1 -1 -0.5 0 05 1

In the coupled simulation, cyclonic eddies (red) are weakened and
there is a much greater abundance of anticyclonic eddies (blue).



SST-Induced Wind Stress Forcing of an Eddy Dipole Pair

SST (°C)
860
840 » The SST signature of cyclonic eddies is

1 typically about 3 times stronger than that

,§820 of anticyclonic eddies as a consequence
= ’— of hydrostatic thermal wind balance:

=> cyclonic vortices have larger SST and SSH
w780 extrema and smaller radial scale
300 ° TS 300 280
x (km) X (km)
Vxt(10°Nm™®) V-1(108Nm™3)

» The associated stronger SST gradients
generate stronger wind stress curl
perturbations that act to force the eddy
away from its axisymmetric shape, which
is a disruptive force to further evolution.
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Conclusions

 The SST influence on surface winds results in O(1) perturbations of
the wind stress curl field that generates open-ocean upwelling.

» This ocean influence on the atmosphere is well represented in the
COAMPS model run in an uncoupleti cenflguratlon

» Results from a “25-cent” fully coupl o

&pdel of an idealized eastern
boundary current upwelling regime \C

de that:

- The cold upwelled water at the coast causes the nearshore winds to diminish,
generating a nearshore positive wind stre
1) weakens the equatorward surface cun“.e'n?‘

2) strengthens the poleward undercurrent n'

4

] ’
3) weakens the alongshore SST front o Us
4) slows the development of baroclinic /nstablllﬁ\i and Weakens the

- The coupling over oceanic eddies preferentlally / ns cyclonic eddies, thus
increasing the abundance of anticyclonic eddie g

QuikSCAT launch, June 19, 1999
Vandenberg, California :






Global Satellite Observations of Air-Sea Interaction
on Scales of 100-1000 km

QuikSCAT launch, June 19, 1999
Vandenberg, California




2-Month Average Wind Stress Magnitude

Northern Hemisphere ~ (SPatially High-Pass Filtered)
Winter QuikSCAT, January—February 2003

High Pass Filtered Wind Stress
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2-Month Average Wind Stress Magnitude and SST Contours

Northern Hemisphere ~ (SPatially High-Pass Filtered)

Winter QuikSCAT, January—February 2003

High Pass Filtered Wind Stress and SST
3

B
60N fkj.- .-

—'::‘ — -y
o=

20S

40S

60S




2-Month Average Wind Stress Magnitude and SST Contours

Northern Hemisphere ~ (SPatially High-Pass Filtered) o1 inm 6nce in the

Winter QuikSCAT, January—February 2003 California Current region
IS weak during winter

High Pass Filtered Wind Stress and SST
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2-Month Average Wind Stress Magnitude and SST Contours

Northern Hemisphere ~ (Spatially High-Pass Filtered) g\ ccale structure is well
Summer QuikSCAT, July—August 2003 developed in the California
Current region during summer

High Pass Filtered Wind Stress and SST
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Observations and 1-Way Coupled Modeling of
Ocean-Atmosphere Interaction in the
California Current System

QuikSCAT launch, June 19, 1999
Vandenberg, California




QuikSCAT 29-Day Average Centered on 5 September 2004

QuikSCAT resolution ~25 km (30-km gap near land)
Navy Coupled Ocean Data Assimilation (NCODA) SST grid resolution 9 km

d) 5 September 2004, QuikSCAT and COAMPS SST

T and SST

125W 120W
C.1.=0.03 N m2, Heavy contour = 0.12 N m™
(O __ =
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COAMPS® Model Run with Two Different SST Boundary Conditions:
NCODA SST and NOAA/RTG SST

Coupling Coefficients

Wind Stress Curl Wind Stress Divergence
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The coupling coefficients are nearly identical for both model runs, indicating that
they are an intrinsic measure of the boundary layer dynamics within the model.

- A given SST anomaly therefore generates a given wind stress response, regardless
of the accuracy and resolution of that SST anomaly.





