Observations and Modeling of Coupled Ocean-Atmosphere Interaction over the California Current System

Dudley Chelton¹, Xin Jin², Jim McWilliams² & Tracy Haack³

¹ Oregon State University
² University of California at Los Angeles
³ Naval Research Laboratory, Monterey, California

Cape Blanco

Cape Mendocino

Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2007: Summertime coupling between sea surface temperature and wind stress in the California Current System. *J. Phys. Oceanogr.*, **37**, 495-517.

Haack, T., D. B. Chelton, J. Pullen, J. Doyle, and M. Schlax, 2008: Air-sea interaction from U.S. west coast summertime forecasts. *J. Phys. Oceanogr.*, **38**, 2414-2437.

Jin, X., C. Dong, J. Kurian, J. C. McWilliams, D. B.. Chelton, and Z. Li, 2008: Wind-SST Interaction in Coastal Upwelling: Oceanic Simulation with Empirical Coupling. Manuscript submitted to *J. Phys. Oceanogr.*

).	0 \	\ 0.	.1 \		0.2
×	Wind	Stre	ss (N	m^2) \

Overview

- 1) QuikSCAT observations of SST influence on surface winds in the California Current System (CCS).
- 2) COAMPS[®] <u>1-way coupled modeling</u> of ocean-atmosphere interaction in the CCS.

TTA .

3) Sensitivity studies of <u>2-way coupling</u> with a "25-cent" empirical fully coupled model of an idealized CCS.

2-Month Average Wind Stress Magnitude and SST Contours

Northern Hemisphere Summer

(Spatially High-Pass Filtered)

QuikSCAT, July-August 2003

Small-scale structure is well developed in the California Current region during summer

QuikSCAT 29-Day Average Centered on 5 September 2004

QuikSCAT resolution ~25 km (30-km gap near land) Navy Coupled Ocean Data Assimilation (NCODA) SST grid resolution 9 km

d) 5 September 2004, QuikSCAT and COAMPS SST

QuikSCAT 29-Day Average Centered on 5 September 2004

QuikSCAT resolution ~25 km (30-km gap near land) Navy Coupled Ocean Data Assimilation (NCODA) SST grid resolution 9 km

d) 5 September 2004, QuikSCAT and COAMPS SST

COAMPS[®] 29-Day Average Centered on 5 September 2004 Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) grid resolution = 9 km Navy Coupled Ocean Data Assimilation (NCODA) SST grid resolution 9 km

d) 5 September 2004, COAMPS

COAMPS[®] Model Run with Two Different SST Boundary Conditions: NCODA SST and NOAA/RTG SST

 $|\nabla SST|$ (°C per 100 km)

RTG SST Gradient

 $\nabla x \tau$ and Crosswind $|\nabla SST|$

Wind Stress Curl

Wind Stress Curl

 $\nabla \bullet \tau$ and Downwind $|\nabla SST|$

Wind Stress Divergence

(N m⁻² per 10⁴ km (color) and °C per 100 km (contour))

Conclusion from the 1-Way Modeling Studies:

The accuracy and resolution of the SST boundary condition are crucially important to realistic model simulations of surface wind response to SST.

Conclusion from the 1-Way Modeling Studies:

The accuracy and resolution of the SST boundary condition are crucially important to realistic model simulations of surface wind response to SST.

Note:

The sensitivity of vertical mixing to atmospheric stability is also crucially important to realistic model simulations of surface wind response to SST

- see Thursday afternoon presentation by Qingtao Song

Implications for Ocean Dynamics

Are feedback effects of SST-induced perturbations of the wind stress field onto the ocean important ?

In other words, is the air-sea coupling 1-way or 2-way?

V L				-N	$\langle \cdot \rangle$
0.0) \	∖ 0.	.1 \		0.2
7	Wind	Stre	ss (N	m2	
\backslash	MILLIO	00100		111	· \

A "25-Cent" Empirical Coupled Model (Xin et al., manuscript submitted to J. Phys. Oceanogr.)

- Based on the ROMS model for the ocean and QuikSCAT-based empirical coupling coefficients for feedback effects on the ocean.
- The procedure consists of forcing the ocean model with large-scale winds and then correcting the winds to include small-scale SST-induced perturbations.
- The results presented here are for an idealized rectangular domain with a meridional eastern boundary.
 - more sophisticated model runs are under development for a realistic California Current System and Peru-Chile Current System.

Overview of Model Results

- The wind stress is initially -0.07 N m⁻² and uniform equatorward.
- The cold upwelled water at the coast generates a crosswind SST gradient that creates a nearshore positive wind stress curl.
- This reduces the coastal upwelling but creates nearshore Ekman pumping.
- The broadening of the nearshore upwelling reduces the intensity of the alongshore SST front, thus slowing the development of baroclinic instability and weakening the mesoscale eddy field.
- The nearshore positive wind stress curl also:
 - causes the equatorward surface current to become shallower and weaker
 - broadens and increases the transport of the poleward undercurrent by Sverdrup dynamics.

Wind Stress, Temperature and Alongshore Velocity

Temporal Evolution of the Eddy Field

Sea-Surface Temperature, Day 60

Note the weaker cross-shore gradient of SST and the weaker eddy kinetic energy in the coupled model run.

Surface Vorticity (Normalized by f) on Day 150

In the coupled simulation, cyclonic eddies (red) are weakened and there is a much greater abundance of anticyclonic eddies (blue).

SST-Induced Wind Stress Forcing of an Eddy Dipole Pair

• The SST signature of cyclonic eddies is typically about 3 times stronger than that of anticyclonic eddies as a consequence of hydrostatic thermal wind balance:

=> cyclonic vortices have larger SST and SSH extrema and smaller radial scale

• The associated stronger SST gradients generate stronger wind stress curl perturbations that act to force the eddy away from its axisymmetric shape, which is a disruptive force to further evolution.

Conclusions

- The SST influence on surface winds results in O(1) perturbations of the wind stress curl field that generates open-ocean upwelling.
- This ocean influence on the atmosphere is well represented in the COAMPS model run in an uncoupled configuration.
- Results from a "25-cent" fully coupled model of an idealized eastern boundary current upwelling regime conclude that:
 - The cold upwelled water at the coast causes the nearshore winds to diminish, generating a nearshore positive wind stress curl that:
 - 1) weakens the equatorward surface current
 - 2) strengthens the poleward undercurrent
 - 3) weakens the alongshore SST front
 - 4) slows the development of baroclinic instability and weakens the mesocale eddy field
 - The coupling over oceanic eddies preferentially weakens cyclonic eddies, thus increasing the abundance of anticyclonic eddies.

QuikSCAT launch, June 19, 1999 Vandenberg, California

Global Satellite Observations of Air-Sea Interaction on Scales of 100-1000 km

QuikSCAT launch, June 19, 1999 Vandenberg, California

2-Month Average Wind Stress Magnitude (Spatially High-Pass Filtered)

Northern Hemisphere Winter

QuikSCAT, January-February 2003

2-Month Average Wind Stress Magnitude and SST Contours Northern Hemisphere Winter Winter 2-Month Average Wind Stress Magnitude and SST Contours (Spatially High-Pass Filtered) QuikSCAT, January–February 2003

High Pass Filtered Wind Stress and SST

2-Month Average Wind Stress Magnitude and SST Contours (Spatially High-Pass Filtered)

Northern Hemisphere Winter

QuikSCAT, January-February 2003

SST influence in the California Current region is weak during winter

2-Month Average Wind Stress Magnitude and SST Contours

Northern Hemisphere Summer

(Spatially High-Pass Filtered)

QuikSCAT, July-August 2003

Small-scale structure is well developed in the California Current region during summer

Observations and 1-Way Coupled Modeling of Ocean-Atmosphere Interaction in the California Current System

TTA .

QuikSCAT launch, June 19, 1999 Vandenberg, California

QuikSCAT 29-Day Average Centered on 5 September 2004

QuikSCAT resolution ~25 km (30-km gap near land) Navy Coupled Ocean Data Assimilation (NCODA) SST grid resolution 9 km

d) 5 September 2004, QuikSCAT and COAMPS SST

COAMPS[®] Model Run with Two Different SST Boundary Conditions: NCODA SST and NOAA/RTG SST

Coupling Coefficients

The coupling coefficients are nearly identical for both model runs, indicating that they are an intrinsic measure of the boundary layer dynamics within the model.

- A given SST anomaly therefore generates a given wind stress response, regardless of the accuracy and resolution of that SST anomaly.