

Progress in Ultra High Resolution Wind and Rain Estimation

David G. Long Brigham Young University

Progress

- Coastal land contamination product (Poster)
- QuikSCAT hurricane tracking (Poster)
- Hurricane model-based wind retrieval (Paper)
- Ultra-high resolution (UHR) simultaneous wind and rain retrieval (SWR)
- SAR-based wind & rain measurement

High Resolution Wind & Rain Retrieval for QuikSCAT

- Use reconstruction/resolution enhancement algorithm to produce 2.5 km/pixel sigma-0 estimates
- Estimate the wind at ultra high spatial resolution (UHR)
 - Value-added product
- 25 km Simultaneous wind/rain (SWR) retrieval techniques have proven viable for rain
 - Noisy compared to TRMM
- Extend SWR for UHR
 - Expect noisy, evaluate

http://manati.orbit.nesdis.noaa.gov/cgi-bin/qscat_storm.pl

(color) QuikSCAT ultra high resolution (2.5 km/pixel) wind speed (barbs) conventional 25 km resolution L2B winds

Rain/Wind Backscatter Model Ku-band

- Model for measured backscatter σ_{M}^{o}

$$\sigma^{o} = \left(\sigma_{W}^{o} + \sigma_{sr}^{o}\right)\alpha_{R} + \sigma_{R}^{o}$$

- Radar signal scattered by falling droplets σ_R^o
- Surface signal attenuated by atmospheric rain α_R
- Surface wind-induced σ_W^o backscatter perturbed by rain striking the water σ_{sr}^o

Simplified equivalent model: $\sigma^{o} = \sigma^{o}_{W} \alpha_{R} + \sigma^{o}_{S}$

SWR Rain Model Function

(tune for UHR) $GMF_r(u, d, R, ...) = GMF(u, d, ...)\alpha(R) + \sigma_{eff}^{\circ}(R)$

$$\sigma^{o} = \sigma^{o}_{W}\alpha_{R} + \sigma^{o}_{S}$$

- Collocated TRMM PR & NCEP winds
- PR PIA and rain
- TRMM rain rate vs. effective rain backscatter estimates
 - NCEP vs. TRMM PR resolution

Simultaneous Wind-Rain Retrieval

• Measurement model $\sigma^{o} = M_{R}(S, \chi, P, \omega, I, R) + noise$

$$p(\sigma^{o} \mid S, \chi, R) = \prod_{k} \frac{1}{\sqrt{2\pi\varsigma^{2}}} \exp\left\{-\frac{1}{2} \frac{(\sigma^{o} - M_{R}(S, \chi, P, \omega, I, R))^{2}}{\varsigma^{2}}\right\}$$

MLE – log-likelihood function

 $(\hat{S}, \hat{\chi}, \hat{R})_{MLE} = \arg\max(S, \chi, R \mid \sigma^{o}) \left\{ -\frac{k}{2} \log(2\pi\varsigma^{2}) - \frac{1}{2} \sum_{k} \frac{(\sigma^{o} - M_{R}(S, \chi, P, \omega, I, R))^{2}}{\varsigma^{2}} \right\}$

UHR implementation

UHR SWR Rain Accuracy

- Apply conventional simultaneous wind/rain retrieval
 - Minimize MLE to estimate wind and rain
- TRMM vs. QuikSCAT rain rates
 High variance
- Regime 0 biased high, wind backscatter mapped into rain space
- Regime 1 unbiased wind & rain
- Regime 2 biased low, rain backscatter mapped into wind space

UHR SWR Co-location Examples

Hurricane Example

TRMM PR

QuikSCAT UHR SWR

Resolution Reduction Study

Can rain estimate error be reduced by degrading resolution?

19 Nov 2008 - DGL

Beam filling error is resolution sensitive...

Surface Effects of Rain on Radar Measurements

- Splash products scatters scatterometer signal
 - Ring-waves dominate VVpolarization C-band
- Turbulence under the water attenuates the Bragg wave spectrum
 - Sea surface roughness also affected by the airflow associated with rain cell
- Atmospheric backscattering and attenuation

Coincident Rain Study Set

- C-band RADARSAT ScanSAR images 9/29/05 ~00 OTC
- **NEXRAD**
- QuikSCAT (within few mins)
- H*wind

Rain Atmospheric Attenuation and Backscatter on SAR Measurements

Rain cell at incidence angles between 44 and 45.7 degrees (C-band)

Summary

- UHR SWR retrieval is a viable, high resolution rain retrieval algorithm (in absence of TRMM PR)
 - □ High noise levels
 - Tradeoff between resolution and estimate variance
- Simplistic polarization model to "recalibrate" ScanSAR SWA images
 Tuned using collocated H*wind surface wind fields
- SAR-derived GMF consistent with the scatterometer-derived GMF
 - □ When HH and VV polarizations is considered
- Backscatter damping/enhancing observed in C-band SAR images
- M.P. Owen and D.G. Long, "Land Contamination Compensation for QuikSCAT Near-Coastal Wind Retrieval", to appear, *IEEE Transactions on Geoscience and Remote Sensing*, 2008.
- C. Nie and D.G. Long, "A C-Band Scatterometer Simultaneous Wind/Rain Retrieval Method", to appear, *IEEE Transactions on Geoscience and Remote Sensing*, 2008.
- S. Nielsen and D.G. Long, "A Wind and Rain Backscatter Model Derived from AMSR and SeaWinds Data", to appear, *IEEE Transactions on Geoscience and Remote Sensing*, 2008.
- B.A. Williams and D.G. Long, "Estimation of Hurricane Winds from SeaWinds at Ultra High Resolution", *IEEE Transactions on Geoscience and Remote Sensing*, Vol. 46, No. 10, pp. 2924-2935, 2008.