Improved OVW Retrievals in Extreme High Wind Events using QuikSCAT

W. Linwood Jones & Pete Laupattarakasem
Central Florida Remote Sensing Lab. (CFRSL)
University of Central Florida, Orlando, Florida

Christopher Hennon
Dept. of Atmospheric Sciences
University of North Carolina – Asheville

OVWST Meeting 2008
“Q-Winds” Extreme High Wind Events Measurements

- Ocean vector winds retrieval algorithm
 - Tailored for Tropical Cyclone ocean vector wind measurements
 - High resolution 12.5 km wind vector cells
- Q-Winds OVW retrievals independent validation using
 - NOAA-HRD H*Wind analysis
 - Compared with JPL L2B-12.5 km
High resolution (6 km) hurricane surface wind field, (1-min average)
Q-Winds Attributes

Unique SeaWinds active/passive retrieval algorithm

- QuikSCAT Radiometer (QRad) to identify rain contamination
QRad & SSMI Rain Comparison in Hurricane Ivan

The good news!

QRad measures rain as well as SSMI retrievals.
QRad & SSMI Rain Comparison in Hurricane Ivan

The bad news!
QRad spatial resolution is not adequate to resolve hurricane rain bands
Q-Winds Attributes

Unique OVW active/passive retrieval algorithm

QuikSCAT Radiometer (QRad) passive T_b’s used to correct rain effects

- Two-way rain attenuation/transmissivity

- Uses special geophysical model function (XW-GMF) “tuned” for hurricanes
Extreme Winds GMF (XW-GMF)

Rain-free or light-rain attenuation corrected sigma-0 collocated with H*Wind surface wind vector

Binned Wind Speed @ 30 m/s

QS-GMF & XW-GMF H-pol
Q-Winds Attributes

Unique OVW active/passive retrieval algorithm

QuikSCAT Radiometer (QRad) passive T_b’s used to correct rain effects

- Two-way rain attenuation/transmissivity

Uses special geophysical model function (XW-GMF) “tuned” for hurricanes

- QuikSCAT Radiometer (QRad) passive T_b’s used to correct rain effects
 - Estimate two-way rain transmissivity for light rains
 - < 6 mm/hr averaged over 12.5 km wind vector cells
Meas Sigma-0 & H*Wind estimated Sig-0 Comparisons

\[\sigma_{meas}^o = L2A_{12.5km} \, \sigma - 0 \]

\[\sigma_{surface}^o = XWGMF(H*Wind) \]
Meas Sigma-0 & H*Wind estimated Sig-0 Comparisons

Rain-free & Rain-contaminated Sig-0

Blue = Rain-contaminated

Rain-contaminated Sig-0

Color-coded by QRad Tb

Surface σ^0 - H*Wind

22 m/s 45 m/s 66 m/s
QRad T_b H-pol Histograms

- Using QRad Tb’s:
 - for Winds < 20 m/s: it is possible to separate rain & rain-free conditions
 - For extreme high winds: it is NOT possible

Non-hurricane

Hurricane
Rain Transmissivity Correction

Rain transmissivity (τ)

$$
\tau = \frac{\sigma^o_{\text{meas}}}{\sigma^o_{\text{surface}}} = \frac{\text{Sigma}_0 - 0_{L2A-12.5\text{km}}}{XWGMF(H \ast \text{Wind})}
$$

Graph showing transmissivity vs. QRad Tb, Kelvin.
Q-Winds Attributes

Unique OVW active/passive retrieval algorithm

- QuikSCAT Radiometer (QRad) passive T_b’s used to correct rain effects
 - Two-way rain attenuation/transmissivity
- Uses special geophysical model function (XW-GMF) “tuned” for hurricanes
- QuikSCAT Radiometer (QRad) passive T_b’s used to correct rain effects
 - Estimate two-way rain transmissivity
- Uses standard MLE OVW retrieval
Hurricane Katrina (08/25/2005)

Q-Winds

Rain flag

L2B-12.5km

H*Wind

Retrieved Wind Speeds

Q-Winds

L2B-12.5km

H*Wind
Wind Speeds Comparison for 18 Revs
Summary

- Collocated QRad T_b provides improved rain effects correction/flagging
 - Corrects transmissivity for light rain < 6 mm/hr
 - Excessive rain rate QC flagging
- Q-Winds wind speeds comparison to H*Wind:
 - Exhibits no apparent saturation for wind speeds < 40 - 45 m/s
- QuikSCAT L2B-12.5km compared to H*Wind
 - Shows severe wind speed saturation
 - Maximum wind speeds approach ~ 30 - 35 m/s in mean