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2-Month Average Wind Stress Magnitude

QuikSCAT, January—February 2003
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2-Month Average Wind Stress Magnitude and SST
(Spatially High-Pass Filtered)

QuikSCAT, January—February 2003

High Pass Filtered Wind Stress
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2-Month Average Wind Stress Magnitude and SST
(Spatially High-Pass Filtered)

QuikSCAT, January—February 2003

High Pass Filtered Wind Stress and SST
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2-Month Average Wind Stress Magnitude and SST
(Spatially High-Pass Filtered)

ECMWF, January—February 2003

High Pass Filtered Wind Stress and SST
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2-Month Average Wind Stress Magnitude and SST
(Spatially High-Pass Filtered)

NCEP, January—February 2003

High Pass Filtered Wind Stress and SST
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Agulhas Return Current (Southwest Indian Ocean)
High Pass Filtered Wind Stress and SST
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Note that the “feature resolution” of atmospheric models is generally about 5 times
coarser than the model grid spacing.

Note also that all of the models underestimate the surface wind response to SST
by about a factor of 2-3 compared with QuikSCAT.

Maloney and Chelton (2006, J. Clim.)



Sensitivity studies with the Weather Research & Forecasting
(WRF) mesoscale model to investigate the underestimation of
surface wind response to SST in the ECMWF model.

® Resolution of the SST boundary condition
® Model grid resolution

® Parameterization of horizontal mixing

® Parameterization of vertical mixing



Sensitivity to Specification of the SST Boundary Condition
Reynolds SST
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Sensitivity to Specification of the SST Boundary Condition
RTG SST
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Forcing by Reynolds SST
underestimates the energy
on all scales shorter than
~1000 km.

Forcing by RTG SST
underestimates the
energy only on scales
shorter than ~250 km



Coupling Coefficients for Equivalent Neutral Stability
10-m Wind Speed from QuikSCAT and WRF

High-pass Filtered Wind Speed (m/sec)
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- Note that the slope is 0.42 for 10-m winds in the WRF
model forced by AMSR SST.



Sensitivity to Grid Resolution

Power Spectral Density of Surface Wind Speed
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The nominal grid spacing for our
WRF experiments is 25 km.

Increasing the grid spacing to 15 km
had a minor effect only on scales
Shorter than ~100 km.

Decreasing the grid spacing to 40 km
degraded the surface wind fields on
scales shorter than ~250 km.

- Note that the ECMWEF grid spacing was
39 km during the time considered here.

Replacing the Reynolds SST boundary
condition with RTG SST had no
discernable effect on scales shorter
than ~250 km, but increased the energy
of the surface winds on scales longer
than ~250 km.

- This is because there is little energy in the
RTG SST fields on scales shorter than
~250 km, as shown previously.



Sensitivity to Horizontal Mixing

Power Spectral Density of Surface Wind Speed
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To control small-scale noise and to
avoid numerical instabilities, the WRF
model uses implicit horizontal diffusion
(filtering) in its integration and advection
schemes, in addition to explicit
horizontal diffusion.

Changing the nominal 6th-order
horizontal filter to 4th-order degraded
the surface wind fields moderately on
scales shorter than ~250 km.

- This degradation was less than that from
decreasing the grid spacing from 25 km to
40 km.

=> The underestimation of wind speed

response to SST in the ECMWF
model on scales longer than ~250 km
is evidently NOT due to horizontal

mixing.



The underestimation of wind speed response to SST in the
ECMWF model on scales longer than ~250 km is evidently
due to something besides the grid resolution, horizontal
mixing or the use of the RTG SST boundary condition.



Sensitivity studies with the Weather Research & Forecasting
(WRF) mesoscale model to investigate the underestimation of
surface wind response to SST in the ECMWF model.

® Resolution of the SST boundary condition

® Model grid resolution

® Parameterization of horizontal mixing

® Parameterization of vertical mixing ‘/
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WRF Model Sensitivity to Vertical Mixing

The WRF model uses the Mellor and Yamada (1982) stability-based
parameterization of vertical turbulent mixing, with an option to use the
Grenier and Bretherton (2001) enhancement of vertical mixing.

The Mellor and Yamada (1982) parameterization of vertical Grenier-Bretherton y
eddy diffusivity for horizontal velocity can be written as Dependence of Q  on Stability
3.0 . | L L L | L L L L L | L
Ky = Splve, ‘
25 -
where e is the turbulent kinetic energy (TKE), [ is a turbulent 20
length scale and S, is a stability function. ]
o 15
The Grenier and Bretherton (2001) parameterization enhances 1.0 —
the vertical transport of TKE to match the TKE profile obtained 1
from large-eddy simulations by formulating the vertical eddy 05 7 S
diffusivity as 0o
: " T T T T T
Ky = Qmlve, -0.040 -0.020 0.000 0.020

Stable <--- ---> Unstable

where Q,,, = 5.5,,.

Song et al. (2008, J. Clim., in press)



Modification of the Grenier and Bretherton (2001) Parameterization
of Vertical Mixing for these Sensitivity Studies

The stability dependence of the vertical mixing parameteriza- Dependence of Q_ on Stability
tion is modified here to have the same form for R =0.3and 1.0
3.0 | L L | S L L L L L | L
25 4 =——R;=0.3
1 (approximately Mellor-Yamada)

but with @, defined by

209 R =1.0
1 (equivalent to Grenier-Bretherton)

Qm = Sh + Rs (58, — SY) . & 15 -

Here S,, is the Mellor-Yamada stability function and S¥ is the 10 ‘
value for neutrally static conditions. The stability response factor o5 /

Rs modulates the dependence of vertical diffusion on stability. ]
0.0 +—F————"F———1T——T7—
A value of Ry = 1 corresponds to the Grenier and Bretherton -0.040 -0.020 0.000 0.020
(2001) scheme with Q,,, = 5S,,. Values of R, < 1 correspond to Stable < Gy - --> Unstable

reduced dependence of vertical mixing on stability.

Song et al. (2008, J. Clim., in press)



Sensitivity to Vertical Turbulent Mixing

Power Spectral Density of Surface Wind Speed
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Spectral analysis and the coupling coefficient between surface wind speed and
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SST in the WRF experiments both suggest that vertical mixing in the ECMWF

model is comparable to a value of R = 0.3 for the stability response coefficient.

1.2

A value of R = 1.0 yields a WRF response to SST almost identical to QuikSCAT
observations, when converted to equivalent neutral stability 10-m winds.

Song et al. (2008, J. Clim., in press)



Relevance to NWP and Coupled Climate Models

Dependence of Q_on Stability Percent Difference Between Q
forR.=0.3and 1.0 forR.=0.3and 1.0
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The WRF sensitivity experiments suggest that NWP and
coupled climate models:

- overestimate vertical mixing in stable conditions
- underestimate vertical mixing in unstable conditions

Song et al. (2008, J. Clim., in press)



Conclusions

® SST exerts a strong influence on surface winds over SST
fronts associated with surface ocean currents.

® The model inadequacies are due to 3 primary factors:
» Grid resolution of the atmospheric models
» Accuracy and resolution of the SST fields.
s Parameterization of vertical mixing sensitivity to
atmospheric stability.
® The WRF experiments suggest that the NWP models:
» overestimate vertical mixing in stable conditions

» underestimate vertical mixing in unstable conditions (more
typical of the ocean)
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