

Biases Related to Stress and Rain

Mark A. Bourassa

Center for Ocean-Atmospheric Prediction Studies
& Department of Meteorology
The Florida State University

Users Make Assumptions When Using Data

- Examples of assumptions common to winds products:
 - The data are temporally homogeneous for inter-annual variability
 - The data qualities (error characteristics) are spatially homogeneous
 - The spatial and temporal resolution is equal to the grid spacing
 - Features evolve smoothly in time
 - Noise is small at the grid resolution provided
 - Derivative fields (usually spatial derivations: e.g., curl or divergences) have homogeneous error characteristics
 - Note: this is a very big deal for oceanographers
 - Data product producers have <u>adequately</u> considered the error characteristics of the data.
 - The statistics of regularly gridded data (at any resolution) should match the statistics of swath data
 - The mean 'speed squared' equals the 'mean speed' squared
 - The data set is good enough for my application

Typical Consequences of Failure

- If the science results are obviously wrong
 - Any data associated satellite are seriously wrong
 - Amazingly, this is the most frequent response
 - The specific data set used is unsuitable for any application
 - Regardless of how obviously unsuitable it was in the first place
- The PO.DAAC has agreed to post appropriate information
 - Provided that we provide it, and
 - Develop the comparison tools/techniques, and
 - The interpretation.
 - Ideally with words and graphics

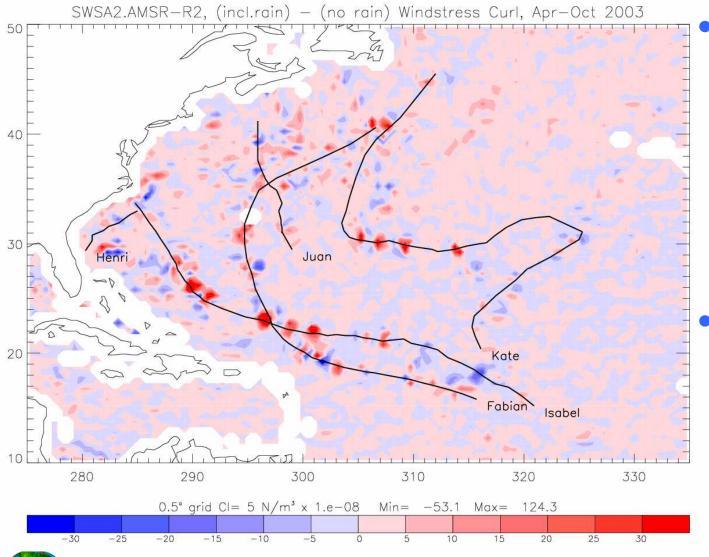
What If A Scatterometer Responds to Stress?

Equivalent Neutral Winds are defined as follows:

$$U_{10EN} = \frac{u_*}{k} \ln \left(\frac{10}{z_o} \right)$$

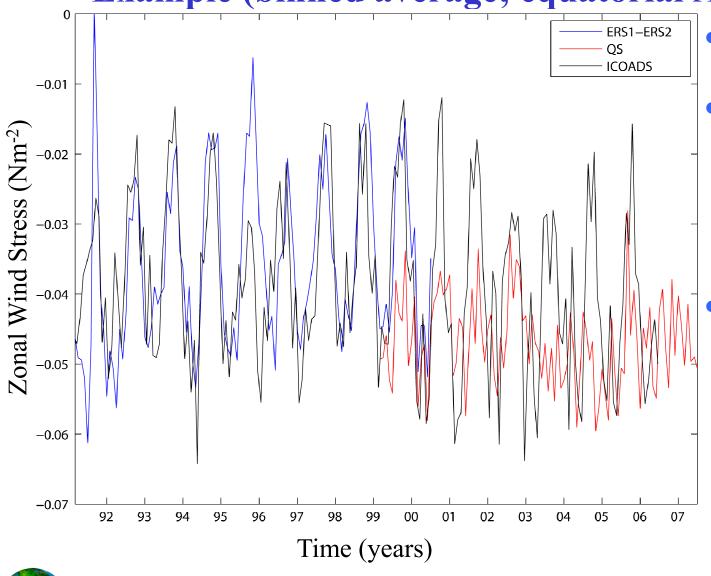
Stress, is a function of air density and friction velocity

•
$$\tau = \rho_{air} u_*^2$$


- Equivalent neutral winds are equivalent to kinematic stress, but NOT to stress.
- If scatterometers respond to stress, then calibrations to this form of equivalent neutral winds will be off by a factor of $\rho^{0.5}$,
 - Or more accurately, in proportion to (actual density / mean calibration density)^{0.5}

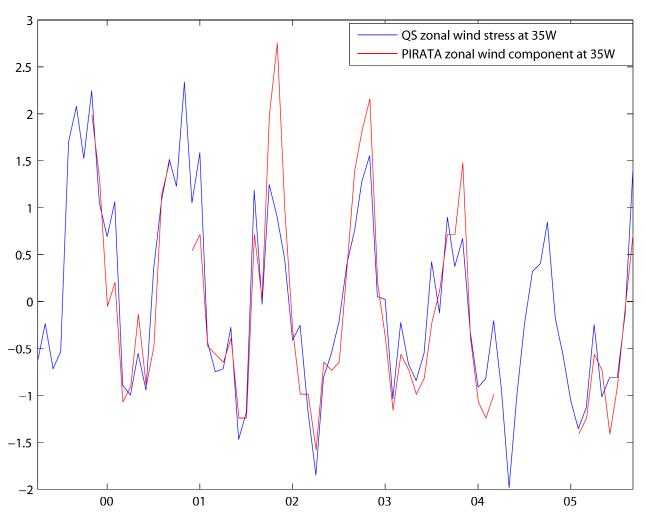
$$U_{\text{\tiny 10EN}} = \frac{\left(\tau / \rho\right)^{\text{\tiny 0.5}}}{k} \ln\left(10 / z_{o}\right)$$

Wind Stress Curl Difference


- Wind retrievals
 using the AMSR
 corrections on
 SeaWinds
 ADEOS-2 minus
 the same winds
 using the
 standard rain
 flag.
- Provided by Ralph Milliff

Mark A. Bourassa

Example (binned average; equatorial Atlantic)



- Zonal wind stress.
- Data
 characteristics for
 the QSCAT
 period is far
 different from the
 ERS period.
- ICOADS data are consistent with ERS, not with QSCAT

Example

- Comparison to a different scatterometer product.
- Talking to the producer of the more questionable product I found that QSCAT data associated with rain were not considered
- All products are not equal!

Conclusions

- Biases in L3 and L4 fields associated with rain, and the use or non-use of rain flags, are a serious problem.
- Biases associated with stress are probably smaller, but could be important in areas with strong temperature gradients and for long term forcing.
- The information on current L3 and L4 products is dangerously insufficient for most users of these products.


Biases Related to Stress and Rain

Mark A. Bourassa

Center for Ocean-Atmospheric Prediction Studies
& Department of Meteorology
The Florida State University

