Obtaining Accurate Ocean Surface Winds in Hurricane Conditions: A Dual Frequency Scatterometry Approach

Ocean Vector Wind Science Team Meeting
Seattle, Nov 19-21, 2008
Outline

• Overview
• Simulation Methodology
 – WRF: Winds, Rain
 – XOVWM Simulation: NRCS values
• Wind Retrieval Method and Results
 – Neural network method
 – Retrieves accurate wind speeds in rain given C and Ku NRCS values.
Overview

• Three Major Problems for Retrieving Accurate Hurricane Winds
 – Need high resolution to resolve high wind speed bands
 – Model functions saturate or drop off at high winds
 – Rain contamination obscures wind speed signal

• Proposed Solutions
 – Burst Mode SAR processing to improve resolution
 – Dual frequency provides unique wind speed solution
 – Dual frequency allows rain correction
Overview Slide 2: IWRAP Model Functions
Overview Slide 3: Rain Effects in Hurricanes w/o correction

C band only

Ku band only

Dual Frequency

Truth
Simulation Method Slide 1: Katrina from Hurricane WRF

Wind

Rain

Nov 18-21, 2008

OVWST Meeting
Simulation Method Slide 2: Rain Effects on NRCS

Attenuation

Volume Backscatter

Nov 18-21, 2008

OVWST Meeting
Simulation Method Slide 3: XOVWM Measurement Geometry

SAR Pixels → Antenna Footprints → Antenna Scans
Wind Retrieval: Slide 1

Rain-free Case, MLE Retrievals

C band only

Ku band only

Dual Frequency

Truth
Wind Retrieval: Slide 2
Rainy Case, no correction

C band only

Ku band only

Dual Frequency

Truth

km

speed m/s

km

speed m/s

km

speed m/s

km
Wind Retrieval: Slide 3
Rainy Case with Correction

![Comparison of wind retrieval methods]

Single Raininess Parameter

ANN Only

ANN+MLE

Truth
Wind Retrieval Slide 4: ANN Method

- Compute 17-D Input Vector to ANN
 - Mean of 8 NRCS “Flavors”
 - C/Ku, Inner/Outer, Fore/ AFT NRCS
 - Variance of 8 Flavors
 - Cross Track Distance
- Train ANN on 2 simulated Katrina + 2 simulated Rita scenes
 - Using Back-propagation Training Algorithm
- Test on 21 scenes not seen during Training including scenes from Helene.
Wind Retrieval: Slide 5

ANN equations: Multi-Layer Perceptron

\[y = c_0 + \sum_{i=1}^{M} c_i s\left(w_{i0} + \sum_{j=1}^{N} w_{ij} x_j \right) \]

\[s(u) = \frac{1}{1 + e^{-u}} \]
Wind Retrieval: Slide 6
Speed Accuracy for Katrina4 Test Scene

ANN RMS = 2.05785 m/s

Truth

ANN - Truth

2-D Log Histogram

True Speed (m/s)

ANN Speed (m/s)
Wind Retrieval: Slide 8
Speed Accuracy for Ku Only ANN

ANN RMS=4.83763 m/s

Truth

ANN - Truth

2-D Log Histogram

True Speed (m/s)

ANN Speed (m/s)
Wind Retrieval: Slide 7
Speed Accuracy for C Only ANN

ANN RMS = 2.09721 m/s

Truth

ANN - Truth

2-D Log Histogram

True Speed (m/s)

ANN Speed (m/s)
Conclusions

- Simulated 25 scenes from Katrina, Rita, and Helene.
- Dual frequency neural net technique retrieves accurate winds up to 55 m/s.
- C band only and Ku-only techniques show severely degraded performance even with similarly trained neural networks.
Backup Slides
Table of Train and Test Scenes

<table>
<thead>
<tr>
<th>Hurricane and Scene ID</th>
<th>Date and UTC Time (ymmdddThh:mm)</th>
<th>Used for:</th>
<th>RMS speed error (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katrina1</td>
<td>050828T11:30</td>
<td>Test</td>
<td>1.73</td>
</tr>
<tr>
<td>Katrina2</td>
<td>050828T17:30</td>
<td>Test</td>
<td>1.73</td>
</tr>
<tr>
<td>Katrina3</td>
<td>050828T23:50</td>
<td>Test</td>
<td>1.84</td>
</tr>
<tr>
<td>Katrina4</td>
<td>050829T05:50</td>
<td>Test</td>
<td>2.06</td>
</tr>
<tr>
<td>KatrinaTrain1</td>
<td>050828T15:10</td>
<td>Training</td>
<td>Not reported</td>
</tr>
<tr>
<td>KatrinaTrain2</td>
<td>050828T20:30</td>
<td>Training</td>
<td>Not reported</td>
</tr>
<tr>
<td>Rita1</td>
<td>050921T15:30</td>
<td>Test</td>
<td>1.79</td>
</tr>
<tr>
<td>Rita2</td>
<td>050921T21:30</td>
<td>Test</td>
<td>1.61</td>
</tr>
<tr>
<td>Rita3</td>
<td>050922T03:30</td>
<td>Test</td>
<td>1.64</td>
</tr>
<tr>
<td>Rita4</td>
<td>050922T09:30</td>
<td>Test</td>
<td>1.62</td>
</tr>
<tr>
<td>Rita5</td>
<td>050922T15:30</td>
<td>Test</td>
<td>1.70</td>
</tr>
<tr>
<td>RitaTrain1</td>
<td>050922T12:20</td>
<td>Training</td>
<td>Not reported</td>
</tr>
<tr>
<td>RitaTrain2</td>
<td>050921T17:00</td>
<td>Training</td>
<td>Not reported</td>
</tr>
<tr>
<td>Helene1</td>
<td>060918T11:00</td>
<td>Test</td>
<td>1.41</td>
</tr>
<tr>
<td>Helene2</td>
<td>060918T13:00</td>
<td>Test</td>
<td>1.43</td>
</tr>
<tr>
<td>Helene3</td>
<td>060918T15:00</td>
<td>Test</td>
<td>1.50</td>
</tr>
<tr>
<td>Helene4</td>
<td>060918T17:00</td>
<td>Test</td>
<td>1.54</td>
</tr>
<tr>
<td>Helene5</td>
<td>060921T22:30</td>
<td>Test</td>
<td>1.72</td>
</tr>
<tr>
<td>Helene6</td>
<td>060922T04:30</td>
<td>Test</td>
<td>1.60</td>
</tr>
<tr>
<td>Helene7</td>
<td>060922T09:30</td>
<td>Test</td>
<td>1.54</td>
</tr>
<tr>
<td>Helene8</td>
<td>060922T14:00</td>
<td>Test</td>
<td>1.66</td>
</tr>
<tr>
<td>Helene9</td>
<td>060923T00:00</td>
<td>Test</td>
<td>1.76</td>
</tr>
<tr>
<td>Helene10</td>
<td>060923T12:00</td>
<td>Test</td>
<td>1.95</td>
</tr>
<tr>
<td>Helene11</td>
<td>060924T00:00</td>
<td>Test</td>
<td>2.15</td>
</tr>
<tr>
<td>Helene12</td>
<td>060924T12:00</td>
<td>Test</td>
<td>1.94</td>
</tr>
</tbody>
</table>
Overall Speed Bias--All Test Scenes

![Graph showing speed bias against true speed with different lines representing different conditions.](image-url)
Overall Speed St. Dev.--All Test Scenes

- Dual ANN
- 5 km ideal
- 10 km ideal
- C Only ANN
- Ku Only ANN

True speed (m/s)

Speed Standard Deviation (m/s)
Rita1

ANN RMS = 1.79279 m/s

Truth

ANN - Truth

2-D Log Histogram

ANN Speed (m/s)

True Speed (m/s)
Helene1

ANN RMS=1.40529 m/s

Truth

ANN - Truth

2-D Log Histogram
Helene11

ANN RMS=2.15052 m/s

Truth

ANN - Truth

2-D Log Histogram

ANN Speed (m/s)

True Speed (m/s)
Simulated Rain Attenuation vs. TRMM

Nov 18-21, 2008 OVWST Meeting 27
Simulated Rain Reflectivity vs. TRMM
Simulated vs. Real QuikSCAT Winds

Real

Observed Rita QuikSCAT 12.5 km Winds Sept 21 2005 11:53 UTC

Simulated

12.5 km Winds Sept 21 2005 15:30 UTC