Validation of 12.5 km Resolution Coastal Winds

Barry Vanhoff, COAS/OSU Funding by NASA/NOAA

Outline

- Part 1: Determining empirical land mask Characterizing σ_0 near coast
- Part 2: Wind retrieval using new mask
 - Methodology
 - Comparisons with NDBC buoy winds
- Future work

Overview of Land Masks

- Current QuikSCAT land mask is fixed
 - 35km for 25km resolution wind vectors
 - 20km for 12.5km resolution wind vectors
- Use backscatter measurements (σ_0) to determine "empirical" land mask
- Key Assumption: At a fixed viewing geometry and location, σ₀ will have a larger variability over ocean than over land
- Long QSCAT mission provides accurate statistics

Characterizing σ_0 Near Coast

- Calculations of temporal mean and variability (*sdev*) of σ_0 *slices* in region within 50km of coast
 - Function of:
 - Measurement location
 - Latitude and longitude of σ_0 center
 - Viewing geometry
 - antenna azimuth angle, χ
 - incidence angle, θ
 - ascending/descending
 - Use 8 years of QuikSCAT σ_{0} data, 2000-2007
 - mean(lat,lon; θ, χ) and sdev(lat,lon; θ, χ);
 - Gridded on a 1/120th degree grid
 - Each calculation includes all σ_{0} within 3km of grid point
 - ~200-400 σ_{0} slice values in each calculation

Examples of slices at different azimuth angles.

Mean of Coastal σ_o

H-pol, azi=45, ascending 34 33 slice orientation - - - 20km from coast 32 238 240 241 242 244 239 243 500 1000 land elevation (m) -30 -20mean $\sigma_0(dB)$ -10 1500 -40 0

- Topography is from GTOPO30 database

Variability of Coastal σ_o

H-pol, azi=45, ascending

- Topography is from GTOPO30 database

Construction of Land Mask

- Your eye can "see" contamination (aided by choice of color palette)
- Apply median filter to "de-speckle" images

 Robust calculation
- Use a spatial extent of ~5km
 - If too small, resulting mask will be noisy
 - If too large, details will be lost

Variability of Coastal σ_o

Variability of Coastal σ_o

Construction of Land Mask

- Your eye can "see" contamination (aided by choice of color palette)
- Apply median filter to "de-speckle" images

 Robust calculation
- Use a spatial extent of ~5km
 - If too small, resulting mask will be noisy
 - If too large, details will be lost
- Determine criteria for "good" vs.
 "contaminated" σ₀

Sdev vs. mean σ_0

-All grid points within 50km of land -Both H-pol and V-pol -All azimuth angles -"One size fits all?"

50 km > D > 20 km

D < 20 km

-All grid points within 50km of land -Both H-pol and V-pol -All azimuth angles -"One size fits all?"

50 km > D > 20 km

D < 20 km

Variability of Coastal σ_o

Red line: New empirical land mask

Variability of Coastal σ_o

Red line: New empirical land mask

Conclusions: Part 1

- Current 20 km land mask is "about right" for global solution at all azimuth angles
- Characterizing σ_0 near coast
 - Variability is smaller near land
 - (Mean is larger in regions near land)
 - Depends upon slice orientation
 - Validates initial assumption
- Determine empirical land mask
 - Used conservative slice through 2-dimensional sdev vs. mean space to remove contamination

Wind Retrieval Details

- Convert land mask into table
- Do "coastal" wind retrievals
 - Only do retrievals within 50 km of coast (<<CPU time)
 - Flag σ_0 slices for contamination prior to compositing
 - Can use either MGDR-NRT *or* "science" code for retrievals
- Merge coastal retrievals with science
- Apply ambiguity removal
 - Treat new coastal winds (d<20 km) similar to "rain" to avoid propagation of possible spurious coastal wind vectors to open ocean

Validation Status

- Comparisons with NDBC buoys
- Collocate with QuikSCAT:
 - Within 30 minutes
 - d<12.5 km from buoys</p>
 - Use selected ambiguity
- Use buoys ~20 km from land
 - Coastal retrievals do not fall within collocation radius (d<12.5 km) if buoy is too far from land

NDBC Buoy Locations

<u>Selected buoys</u> -Four "open ocean" buoy -Six "coastal" buoys

Collocations with these six coastal buoys include winds that are <20 km from land.

NDBC Buoy Info

• "Open Ocean" buoys

•	Buoy	lon	lat	npts	dist	VC	CC1	CC2	srms	drms
•	======	=========	=========	=========	=======	========	========	=======	======	====
•	46002	229.74	42.53	8215	>99	1.69	0.93	0.76	0.9	23.8
•	46005	229.00	46.08	8081	>99	1.73	0.93	0.81	1.0	22.4
•	46006	222.51	40.84	5272	>99	1.76	0.92	0.84	1.1	22.2
•	46059	230.00	37.98	9650	>99	1.66	0.94	0.73	0.9	24.3

• "Coastal" buoys

•	Buoy	lon	lat	npts	dist	VC	CC1	CC2	srms	drms
•	======		=======		======	========	======	======	======	=====
•	46011	239.13	34.88	4604	21	1.20	0.88	0.32	1.3	29.4
•	46013	236.70	38.23	6671	23	1.23	0.91	0.32	1.5	28.7
•	46014	236.03	39.22	4042	20	1.14	0.91	0.23	2.1	30.7
•	46022	235.49	40.74	4421	22	1.21	0.90	0.30	1.8	35.6
•	46027	235.62	41.85	2635	17	1.20	0.88	0.32	2.6	35.6
•	46054	239.55	34.27	4871	17	1.04	0.88	0.16	1.7	29.0

NDBC 46013

RMS Directional Difference

RMS Speed Difference vs. distance

QuikSCAT Speed Histograms vs. dist

Conclusions: Part 2

- Processing
 - Simple code adaptations allow for use of new land mask
 - Merging with science winds allows for rapid retrieval times
- Validation
 - Low vector correlations result from little "signal" in offshore direction
 - Along-coast correlations are high, ~0.9
 - Dir diff RMS is slightly larger than open-ocean (~30 deg vs. ~24 deg)
 - Spd diff RMS increases as QuikSCAT wind vectors get closer to land; SCAT speed histograms are narrower

Future Work

- Expand analysis to other regions
- Validate using SAR
 - Use open ocean QuikSCAT/SAR comparison as benchmark;
 - Use results from open-ocean comparison to validate coastal QuikSCAT wind vectors

END

Science Retrievals

April 25, 2001

Merged Retrievals

April 25, 2001

Coastal Retrievals

April 25, 2001

Canonical Correlations vs. VC

NDBC Buoys

NDBC Buoys

