Characteristics of high resolution winds from SAR

Michael J. Caruso

CSTARS/RSMAS/University of Miami 11811 SW 168th St Miami, FL 33177

Overview

Synthetic Aperture Radar
 Winds from Synthetic Aperture Radar
 Strengths and weaknesses
 Coastal winds
 Hurricane watch program
 Hurlicane analysis
 Katrina comparison with QS winds
 Eye wall gallery

<u>Immary</u>

Winds from SAR High (300 - 500 m) Resolution Scatterometer priori wind directions wind direction from model or nd streaks using the Local adient Method **IS 1.76 m/s (buoys)**, 1.24 m/s (QS), m/s (models)

Strengths and weaknesses

Strengths

- Accuracy comparable to scatterometry
 Sub km resolution winds
 Near shore measurements
- Wind speed errors related to wind direction errors

esses

bsolute calibration of backscatter, articularly in wide scan mode imited coverage

Envisat ASAR October 23, 2008 03:25:00.00 27⁰N 40' LKWF1 20' 26⁰N

△ FWYF1

80⁰W

30'

45'

15'

40'

15'

12

10

8

6

2

Fronts

Station LKWF1 –
8.8 m/s, gust 11.8 m/s
Station FWYF1 –
6.7 m/s, gust 7.2 m/s
Winds from ENE
Frontal features from 2 – 7 km

CSTARS

Hurricane Watch

The Center for Southeastern Tropical Advanced Remote Sensing (CSTARS) with the Canadian Space Agency (CSA) and the U.S. National Oceanic and Atmospheric Administration / Atlantic Oceanographic and Meteorological Laboratory (NOAA/AOML)

halysis of C-band Synthetic Aperture adar (SAR) data acquired over

ricanes

arted in 1999 and has collected over timages of tropical cyclones

Katrina

- Max wind speed 150 kts
- Cat 1 landfall at Miami
- Aug 27 Doubled in size
- Cat 5 Aug 28 1200 GMT
- Cat 3 landfall Aug 29 1100

CSTARS

Ultra High Resolution Winds

August 28, 2005 11:26:45.45

CSTARS

sat ASA R Katrina August 28, 2005 15:50 GMT 55 50 Katrina August 28, 2005 15:50 GMT 45 70 40' Zonal Meridional 60 40 50 35 20' Wind speed (m/s) 30 25 20 26⁰N 20 10 15 0 -100

5 0 40'

-80

-60

-40

10

40'

89°W

40'

20'

88⁰W

-20 0 20 Distance from center (km)

40

60

100

CSTARS

80

Future SAR

Radarsat 2

2007 launch

- Global, 1 3 days revisit time
 20° 60° incidence angle
 3 100 m resolution; 20 500 km swath
 - X-band, 2007 launch HH, VV, HV, VH
 - lobal, 1 3 days revisit time
 - - 60° incidence angle
 - **16 m resolution; 10 100 km swath x (up to 1,500**

Future SAR

COSMO-SkyMed

- tes equipped with X-band multipolarimetric SAR
- 2007, 1 in 2008, 1 in 2010
- 90° phased sun-synchronous
- Global, < 12 hr revisit time
 - 59° incidence angle
 - 00 m resolution; 10 200 km swath

Summary

SAR winds show mountain wakes, lee waves point wakes, frontal instabilities and near coastal winds.

Hurricane eye wall structures vary in size and shape and are clearly identified by SAR Wind fields derived from SAR good accuracy at moderate winds The RMS is significantly larger For hurricane winds and more work is required The next generation of SAR are orbiting

Questions?

H Polarization

 $= \sigma_V^o \left[\frac{1 + \alpha \tan^2 \theta}{1 + 2 \tan^2 \theta} \right]^2$

Dependent on nature of scattering

9 Nadir incidence angle

Wind direction sensitivity

Model Comparison (Katrina)

Climatology from SAR considering 450 SAR acquisitions

Synthetic Aperture Radars

Launched	Satellite	Band	Resolution	Swath
1978	Seasat	L	25 m	100 km
1991	ERS-1	С	25 m	100 km
1991	JERS-1	L	< 25 m	75 km
1995	ERS-2	С	25 m	100 km
1995	Radarsat	С	25 – 100 m	400 km
2002	Envisat	С	25 – 100 m	400 km

