Error Characteristics of Scatterometer-Derived Vorticity as a Function of Spatial Scale

Mark A. Bourassa

Center for Ocean-Atmospheric Prediction Studies & Department of Meteorology
The Florida State University
Motivations & Approach

- Spatial derivatives (curl and divergence) of wind or stress are very important in regards to ocean forcing and convection in the atmosphere.
- I use curl as part of a detection algorithm for tropical disturbances.
- I want to characterize the errors (bias and noise) as a function of the spatial scale used in the calculation.
Warm Core Seclusion: Case 1

QSCAT vector wind speeds (ms⁻¹) in the North Pacific Ocean (Dec. 24, 2004). Black vectors indicate serious rain contamination.

Mark A. Bourassa

OVWST 2008
Warm Core Seclusion: Case 2

- QSCAT vector wind speeds (ms⁻¹) for two adjacent passes in the North Atlantic Ocean (Oct. 20, 1999 at 0701Z and 0842Z).
SeaWinds Data

- Simplified version-3a of the Ku2001 product developed by Remote Sensing Systems (RSS).
 - Includes time, location, surface (10 m) wind speed, wind direction and rain-flag.
- 25 km grid spacing within a swath that’s 1800 km wide
 - 76 vector wind cells across the swath.
 - The smallest area to calculate vorticity is 25km × 25km.
- Swaths are not perfectly gridded.
- Missing values:
 - Land contamination,
 - Outside the observational swath or
 - Serious rain contamination.
- Reduced accuracy of wind vectors due to rain. Leaves two options:
 - Develop a technique that is insensitive to rain-contaminated data or
 - Attempt to avoid using such data (done here).
Methodology

- Relative vorticity is then determined by dividing the circulation by the area.
 - $\zeta = C / A$

- Circulation is calculated as a line integral about a “shape” using the circulation theorem.
 - $C = \oint \mathbf{v} \cdot d\mathbf{l}$
 - “shape” is dependent on available data: polygon (triangle, square …).
 - Linearly interpolate wind vectors between adjacent good obs.
 - Too many missing points on the “shape” perimeter (<80%) and the vorticity isn’t calculated.

- Individual dot products along circumference of the “shape” using wind speed components and distance between data points.
 - $\mathbf{v} \cdot \mathbf{l} = 0.5 (u_2 + u_1, v_2 + v_1) \cdot (x_2 - x_1, y_2 - y_1)$
 - Circulation is the sum of the dot products.
Methodology: Spatial Scale

- Only data on the perimeter of the shape contributes to the calculation.
- As the shape becomes larger, it becomes more circular.

Ringsize 1

Ringsize 4
Observational Errors

- Random vector component errors:
 - Assessed several ways:
 - (Freilich 1997;
 - Stoffelen 1988;
 - Bourassa et al. 2003;
 - Freilich and Vanhoff 2006).
 - The conservative (large) estimate of 0.6 ms^{-1} (Freilich et al. 1997) is used to determine an upper bound.

\[Vorticity \text{ Uncertainty (s}^{-1}) \]

Uncertainty decreases with increasing ringsize.

\[\text{Error} \sim \text{diameter}^{-1.5} \times \text{grid spacing}^{-0.5} \]

\[\sim 0.5 \times 10^{-5} \text{ s}^{-1} \]
Observational Errors

- Ambiguity selection errors:
 - Associated with the process used to determine the best fit for the wind direction from the backscatter to the satellite.
 - Goodness of fit as a function of direction.
 - Most likely below 8 ms\(^{-1}\).

- Calculated RMS difference of vorticity:
 - ringsize (1-9) – ringsize (10)
 - wind speeds from 0.5 ms\(^{-1}\) to 19.5 ms\(^{-1}\) increasing by 0.5 ms\(^{-1}\).
 - Implies that the random vector error model accounts for most ambiguity errors.
Warm Core Seclusion: Case 1

- QSCAT vector wind speeds (ms\(^{-1}\)) in the North Pacific Ocean (Dec. 24, 2004). Black vectors indicate serious rain contamination.

Mark A. Bourassa
Swath-Based Vorticity: Case 1, 25km
Swath-Based Vorticity: Case 1, 100km
Warm Core Seclusion: Case 2

QSCAT vector wind speeds (ms⁻¹) for two adjacent passes in the North Atlantic Ocean (Oct. 20, 1999 at 0701Z and 0842Z).
Swath-Based Vorticity: Case 2, 50km
Swath-Based Vorticity: Case 2, 75km
Swath-Based Vorticity: Case 2, 100km

0 5 10 15 20 25 30 35 40 ×10⁻⁵ s⁻¹
What Causes The Suspicious Fine Scale Features?

- Leading possibilities
 - (1) Bourassa messed up the code!

Not seen about tropical disturbances
Until a much finer color bar is applied.
What Causes The Suspicious Fine Scale Features?

- Leading possibilities
 - (1) Bourassa messed up the coding!
 - (2) RSS messed up the retrievals at high wind speeds.

RSS Retrieval

JPL Retrieval

Mark A. Bourassa

OVWST 2008
What Causes The Suspicious Fine Scale Features?

- Leading possibilities
 - (1) Bourassa messed up the coding!
 - (2) RSS messed up the retrievals at high wind speeds.
 - (3) Truncation error associated with the assumption of a linear change in wind vectors between adjacent points.
Estimated Truncation Errors

- Error estimate is based on the mathematics of truncation errors

- As with the observational uncertainty, the area increases faster than the number of truncations, resulting in the diameter\(^{-1.5}\) dependency.

- The dependency on grid spacing is much larger than for observation errors, and decreases for finer grid spacing.

- This type of uncertainty is going to be relatively small contribution for typical wind speeds, but becomes quite large for wind speeds >20ms\(^{-1}\).

\[
\text{Uncertainty decreases with increasing ringsize.}
\]

\[
\text{uncertainty} \sim \text{diameter}^{-1.5} \times \text{grid spacing}^{1.5}
\]

\[
\text{Errors appear to be proportional to wind speed.}
\]
Bias: Spatial Averaging Error

- Examined tropical disturbances from 1 August - 31 October 1999.

- Change in vorticity relative to vorticity with ringsize 1.

- Bias as compared to ringsize 1:
 - smaller features not considered.

- Potential to ‘over-smooth’.

- Different biases for other types of weather.

![Graph showing vorticity bias with ringsize](image)

- Bias increases with ringsize.

- ~ 1.4×10^{-5} s$^{-1}$ for ringsize 4
Conclusions

- Error characteristics of derived products need to be much better understood
- The larger the area over which vorticity (or curl of the stress) is determined, the larger the bias
 - particularly for low pressure systems (including fronts)
- Observational error is negligible for a 25km grid spacing
- Truncation error vastly dominates
 - Increasing resolution by a factor of ~5 will result in a truncation error that is of similar error to the observational error for high wind speeds!
 - Clearly a substantial advantage of XOVWM