

Dec-Jan-Feb

- frequent in wintertime midlatitudes (storm track region)
- less in the (sub-) tropics

Color: High wind frequency (%)

Jun-Jul-Aug

Tropical cyclones do not emerge in climtology

Figure 6. (a) Climatological Jan.~Feb. distribution of 925-hPa U (heavy lines for every 3 m s⁻¹) and 250-hPa U (light and heavy stippling for 30~40 and 50~60 m s⁻¹, respectively), based on the NCEP reanalyses. (b) As in (a) but for 850-hPa poleward eddy heat flux (heavy lines for every 4 K m s⁻¹). Light and heavy stippling indicates oceanic frontal zones where meridional SST gradient (°C/110 km) is 0.6~1.2 and above 1.2, respectively (with thin lines for every 0.6), based on the data by Reynolds and Smith [1994].

NCEP/NCAR reanalysis (Nakamura et al. 2004)

Winter North Pacific

SST influence is not clear (front is not so sharp).

several orography-related features

Around Japan

- Orography (Greenland, Norway, France-"mistral")
- SST frontal effects (more frequent over warmer waters)

North Atlantic

- Orography (Greenland, Norway, France-"mistral")
- SST frontal effects (more frequent over warmer waters)

NCEP reanalysis-2 *2006 is not included

- orography-related features are not captured well
- •SST impact is not clear (land-sea contrast is conspicuous)

momentum-mixing mechanism

lower static stability over warmer waters →
enhanced mixing → increase in downward
transport of momentum to the surface. (Wallace
et al. 1989 etc.)

off Greenland

JJA

Southern Indian Ocean

Top 10 list for frequent high winds (annual mean)

Blue: Orographic; Red: SST fronts; Gray shade: near ice edge

	frequency (%)	position	name
1	16.4	59°N 43°W	Cape Farewell, Greenland
2	11.6	65°S 52°E	Enderby land, Antarctica
3	11.5	65°N 36°W	E. coast of Greenland
4	10.3	68°N 22°W	Denmark Strait
5	10.0	55°S 3°E	Bouvet Island, S. Atlantic
6	7.9	47°S 86°E	S. Indian Ocean
7	7.6	45°S 76°E	NE of Kerguelen Isl., S. Indian Ocean
8	7.5	56°S 68°W	Cape Horn
9	6.9	51°N 44°W	N. Atlantic
10	5.9	43°S 64°E	NW of Kerguelen Isl., S. Indian Ocean

High wind occurrence

QuikSCAT satellite reveals rich variability of high winds.

- Basin scale: storm tracks and the westerlies
- Sub-basin scale: SST and orography
 - spatial variations across oceanic fronts
 - more (less) over warmer (colder) waters
 - coastal orography (cape wind, gap wind)

Sampe and Xie, BAMS, accepted. Preprint, data and images available at http://iprc.soest.hawaii.edu/~takeaki/highwind/index.html

Why do high winds occur near major ocean fronts?

Nakamura et al. (2004)

October 28, 1991

In the Fall of 1991, the <u>Andrea Gail</u> left Gloucester, Mass. and headed for the fishing grounds of the North Atlantic.

Two weeks later, an event took place that had never occurred in recorded history.

ANDERSON

PERFECT STORM

LEVER REPOR

