Scientific Potential for XOVWM

Summary of Science Studies in Support of XOVWM in Summer 2007
Background

• A set of short directed studies was requested by NASA HQ in support of XOVWM

• Study teams:
 – COAPS/FSU: Bourassa, Maue, Morey
 – JPL: Chao
 – UW/JPL: Kelly, Thompson, Booth, Patoux, Veleva
 – CoRA/BYU: Milliff, Long, Morzel, Williams
 – OSU/JPL: Strub, Abbott, Bane, Barth, Chao, Freilich, Haack, Holt, James
 – Woods Hole/JPL: Yu, Jin, Veleva
COAPS Objectives

• Evaluate the advantages of 5km resolution with improved rain capabilities

• Applications:
 – Detection of Tropical Disturbances
 – Investigation of Storm Surge
 – Fine Scale Features in Atmospheric Fronts
 – Warm Core Seclusions
 – Cross Shelf Transport of Water Properties

• In each of these cases, increased spatial resolution and/or improved retrievals in rain would be beneficial to studies seeking to better understand processes in the upper ocean or lower atmosphere.
Storm Surge

- Blending QSCAT with NCEP lacks the spatial resolution to produce realistic wind-induced changes in sea surface elevation and storm surge.
- Adding the relatively high resolution HWIND data to the blend results better representation of the winds around the core, as well as the eye wall.
 - The inclusion of the high resolution data resulted in a very accurate storm surge hindcast, and showed which part of the wind field was critical in this case.
Wind Speed (m/s) every 16th vector at 5 km resolution
Over the Gulf Stream, cold, dry air meets warm, moist air to form a front and ideal conditions for storm formation.

Slight changes in wind direction indicate convergence and vertical motion (convection) at the front, which fluxes heat and moisture from the ocean to the atmosphere.
Convergence from XOVWM Wind Vectors to distinguish effects of atmospheric versus ocean fronts

High-resolution winds can distinguish effects of ocean on atmospheric stability versus the convergence from fronts to understand and improve predictability of storms.
Maximum Aposteriori Probability (MAP) Hurricane Model:

Hurricane Model Prior

MAP Field Estimate

Hurricane Floyd (1999)
3-Step Process to Identify “Surrogate Mesoscale”
Surrogate Mesoscale is \(O(30\%) \) total storm signal in WSC, WSD.
Polar-Orbiting Scatterometer Coverage of N. Atlantic Hurricanes: 2003 Season

- Average WSC differences; AMSR-corrected – Std Product (R2)
- Typical coverage in sub-cycle; 2x/day for 2 days, 1x/day for 1 day, total miss 1 day
Zonal-Average, Seasonal-Average, Atlantic Basin-Scale WSC

Estimate 1. Use AMSR-R2 zonal average WSC directly

- AMSR-R2 difference is concentrated on hurricanes where largest rain flag errors occur in R2
- AMSR corrections represent an aggregate of hurricane mesoscale
- zonal-average WSC difference in band 15°-35°N is \(0 - 2 \times 10^{-8} \text{ Nm}^{-3}\)
- this is about a 30% increase, in each latitude band, over R2
- (linearly) consistent with value-added estimate for single storm snapshots using UHR/MAP

Estimate 2. Use AMSR-R2 map to locate hurricane samples

- AMSR-R2 difference map identifies hurricane signals surviving seasonal average
- augment positive and negative WSC anomalies by 30% (from UHR/MAP analysis) i.e. for each latitude band, value-added = 0.3x “red bullets” – 0.3x “blue bullets”
- accumulate new zonal average (green profile)
- zonal-average difference is about 20% \((0.5 \times 10^{-8} \text{ Nm}^{-3})\) in latitude bands containing hurricane WSC anomalies
High-resolution, rain-corrected winds from XOVWM can improve the estimates of hurricane-induced latent heat energy, leading to a better understanding of the self-sustaining intensification mechanism and better prediction of the hurricane intensity.

Hurricanes are giant heat engines: they convert latent heat from tropical oceans into the energy of the storm.

- Hurricane draws up heat and moisture from warm tropical oceans. The heat of the ocean is latent – hidden – in the water vapor.
- Water vapor rises, condenses to water droplets, releases latent heat, and energizes the storm.
- The intensified winds suck more heat and moisture, which create more water vapor, which….

(From http://visibleearth.nasa.gov/)
Hurricane-extracted oceanic latent heat energy
Estimated from XOVWM and QuikSCAT winds

Hurricane Katrina extracts ~0.18PW latent heat energy from the tropical ocean. Removing rain-affected winds reduces the estimate of total heat energy by more than 50%.

Total latent heat energy extracted by Katrina during Aug28-29, 2005

Sensor resolution affects the magnitude and distribution of latent heat energy from the ocean.
High-Resolution Coastal Winds

Complex windfields in the 20-30km next to the coast create patterns of currents, temperatures & plankton that fuel the rich coastal ecosystem. With present resolution, we are blind to coastal and detailed offshore wind structure, which may be as complex as phytoplankton fields (left). These winds:

• Are not resolved by our best coastal atmospheric models;
• Interact with surface water temperatures, coastal capes and bays to create both wind shadows and intense narrow jets, which may extend far offshore and are poorly understood;
• Create “centers” of upwelling at coastal and offshore locations;
• Create conditions favorable for productive ecosystems, as well as harmful algal blooms and hypoxia (“dead zones”);
• Create currents that advect marine ecosystems, toxic blooms, hypoxic patches of water, disabled ships and the larvae of coastal fish and shellfish into favorable or unfavorable regions for survival;
• Create updrafts and downdrafts that create patterns of clouds and fog.
AOSN Aircraft Observations, August 2003

Upwelling Velocity (m/day)

Images courtesy of Tracy Haack
Detailed Wind Fields

Estimates of wind speed are made from the SAR sensor. Wind direction are estimated from models, allowing calculation of wind stress curl and vertical motion in the ocean. Fields of wind speed and vertical motion (right) off California and Oregon capes, with sharp changes in winds (5 m/s to 22 m/s over short distances) and vertical motions of 20-30 m/day. Similar wind speed fields around SF Bay and the Channel Islands (left).