

- **NEED** Multiple scatterometers to extend the coverage of QuikSCAT and provide continuity
- UNDERWAY
 - EUMETSAT ASCAT on METOP series 1st is in orbit
 - ISRO Oceansat-2 Timely data access
 - SOA HY-2 Timely data access
- PROPOSED
 - CNSA/SOA/CNES CFOSAT Timely data access
 - NOAA will propose an operational scatterometer to follow QuikSCAT either a:
 - Functional equivalent or
 - Capability to improve the resolution of both the *rain ambiguity* and high wind speed regime

http://manati.orbit.nesdis.noaa.gov/SVW_nextgen/SVW_workshop_report_final.pdf

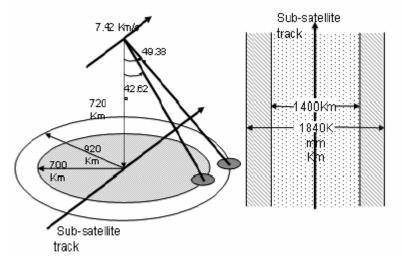
Table 1. Platform and sensor parameters of the four scatterometer missions

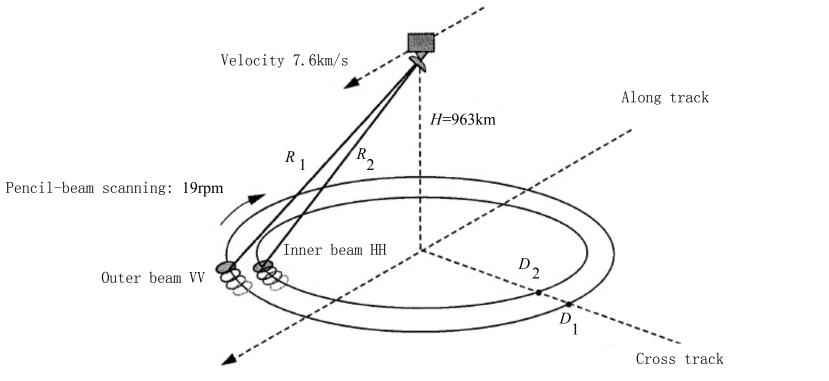
Satellite	Orbit Inclination	Swath Width	ЕСТ	Orbit Height
	(degree)	(km)	(local time)	(km)
QuikSCAT	98.722	1900	5:54 am/pm	803
ASCAT	98.7	2x550	9:30 am/pm	817
Oceansat-II	98	1840	12:00 am/pm	720
Haiyang-2	99	1700	6.00 am/pm	965

ECT - equatorial crossing time

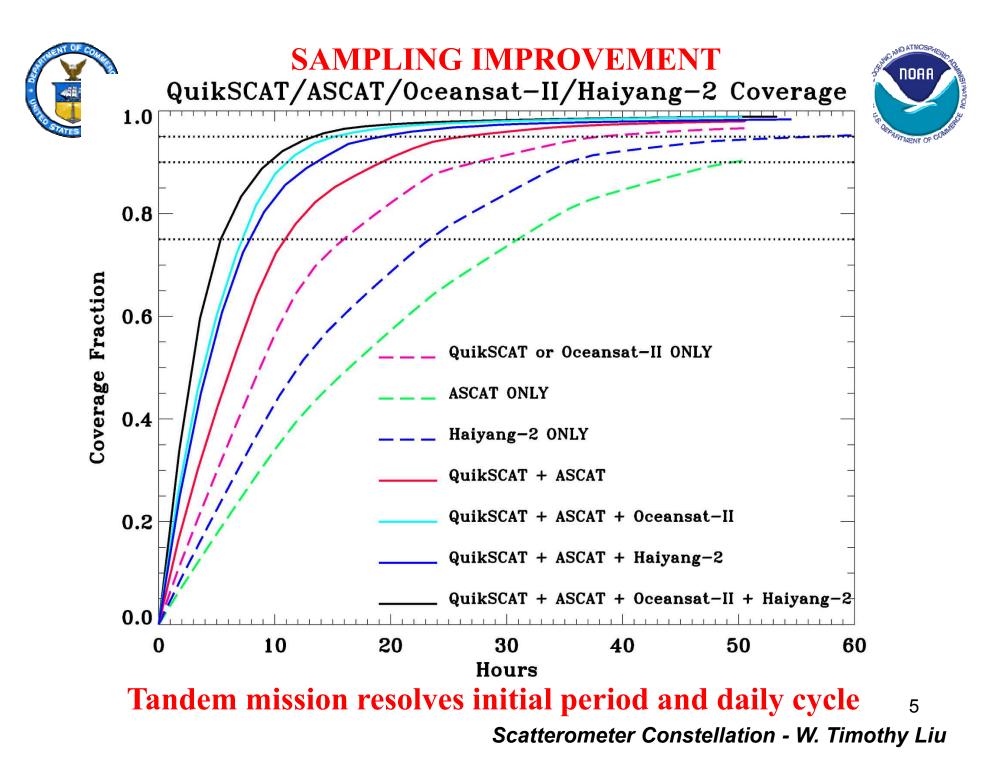
Table -1: Technical characteristics of Oceansat-II Scatterometer

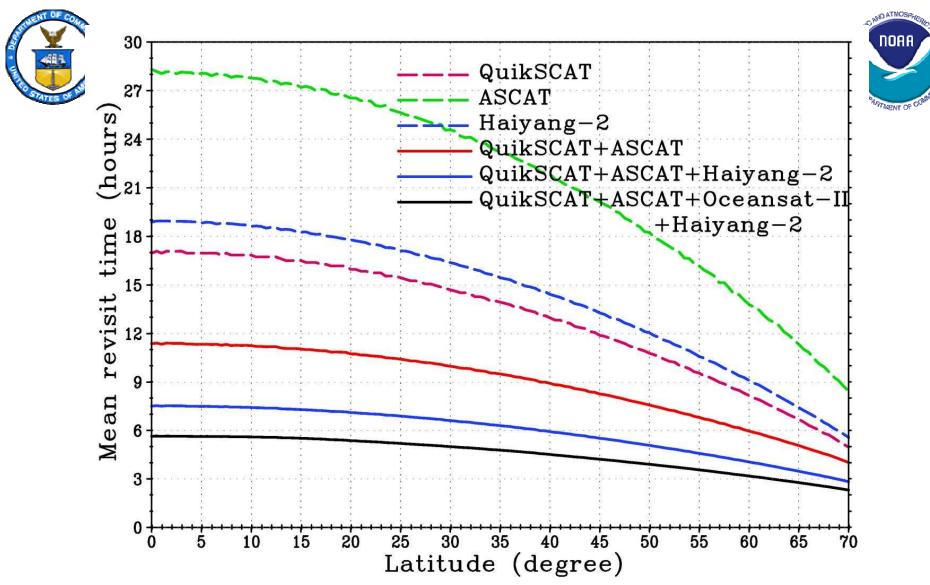
	Inner Beam	Outer Beam	
Altitude	720 Km		
Look Angle	42.62°	49.38°	
Incidence Angle	48.9°	57.6°	
Swath	1400 Km	1840 Km	
One way 3-dB Beam Width	1.47° x 1.67°	1.47° x 1.67°	
One way 3-dB foot Print	26 Km X 46 Km	31 Km X 65 Km	
Nominal Slice Width (Across Scan)	8Km	8Km	
Inter center spacing along Track	19 Km	19 Km	
Inter center spacing along scan	15 Km	19 Km	
Wind Speed	4-20 m/s with accuracy of 2m/s (rms) 20-24 m/s with accuracy of 10% (rms)		
Wind Direction	0-360° (20° rms)		
Gridding	50Km x 50Km		



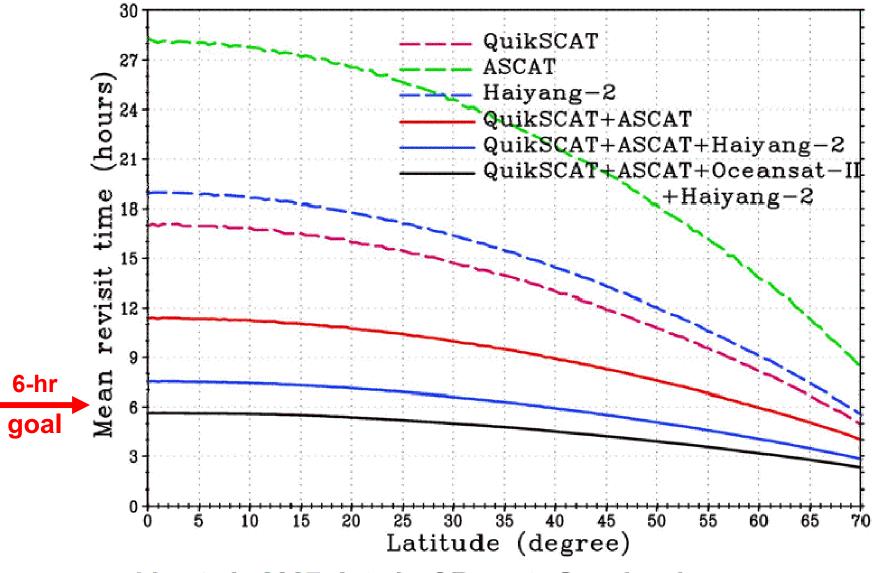

Fig: 1 Viewing Geometry and Swath of Oceansat-II scatterometer

HY-2 Scatterometer Characteristics




- Swath width: >1350km for H; >1700km for V
- Ground resolution: 25km
- Polarization: HH (inner beam) and VV (outer beam)
- Antenna incidence angle: 38⁰ (for inner beam); 44⁰ (for outer beam)
- Antenna gain: 42dBi
- Beam width (azimuth \times tilt): $1.40^{0} \times 1.30^{0}$ (for H); $1.35^{0} \times 1.20^{0}$ (for V)

- •Antenna dimension: 1.3m
- Transmitted peak power: 120W
- PRF: 100-200Hz
- Frequency: 13.255GHz
- LF bandwidth: 3MHz
- Orbit height: 963km
- Obit inclination angle: 99°
- Local crossing time for the descending nodes: 6:00 or 18:00

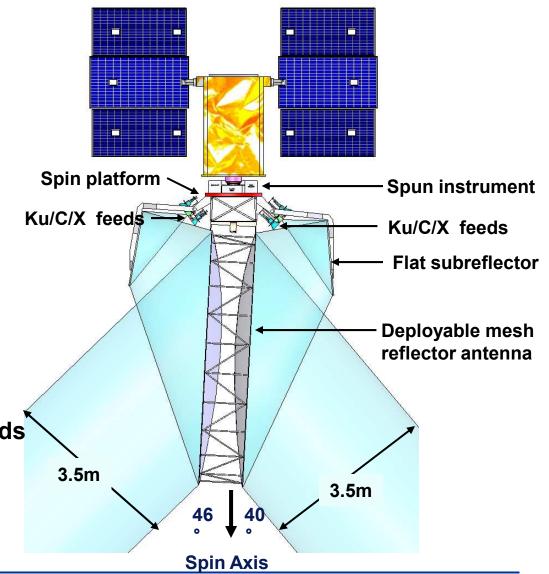


Scatterometer constellation will provide less than 6-hour revisit interval for all latitudes, meeting operational weather forecast requirement

Timely Data Access will Enable Significant Reductions in Mean Revisit Times

Liu et al., 2007, Int. J. of Remote Sensing, in press.

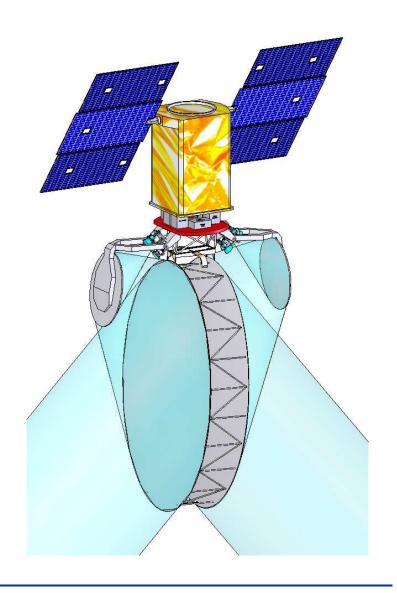
Recent Events



- NOAA Operational Satellite Surface Vector Winds Requirements Workshop, Tropical Prediction Center – Miami, June 5-7, 2006 http://manati.orbit.nesdis.noaa.gov/SVW nextgen/SVW workshop report final.pdf
- \$4M for research to operations transitioning of ocean capabilities has now been provided for the third year in a row (FY05-07)
- New leader Mary Kicza at NOAA/NESDIS was quick to recognize and act on the difference in capabilities between WindSat and QuikSCAT
- New leader Mike Freilich at NASA/ESD shares with Kicza an appreciation of the challenge of *transitioning*
- The controversy over NOAA's lack of a QuikSCAT follow-on caused by the (then) Director of the NHC got this issue fully into the open
 - Both Kicza and Administrator Lautenbacher have testified to Congress
 - She and the (then) head of the NWS have visited JPL
- NPOESS Nunn-McCurdy impact on climate data records has generated some interest in the Administration
 - OSTP made \$15M available to address this in FY07
 - Of this amount, the NOAA scatterometer study received \$500K (to which we secured an additional \$500K as a match)

Extended Ocean Vector Winds Mission (XOVWM) Observatory

- XOVWM to provide the nextgeneration wind measurement capabilities:
 - Spatial resolution ~ 5km
 - Wind speed range up to
 Category 5 hurricanes
 (155 mph winds)
 - All-weather capabilities, even in rain
- XOVWM builds on proven technologies:
 - Ku-band pencil beam (Quik-SCAT) and SAR for high res.
 - C-band (ASCAT) for high winds and better performance in rain
 - X-band radiometer
 (AMSR/WindSat) for improved rain correction



Courtesy of Ernesto Rodriguez, JPL

XOVWM *Mission Characteristics*

- Orbit: 800 km altitude, sun-synchronous
- Swath: 1800 km
 - 90% global coverage/day
- Scatterometer spatial resolution:
 - Ku-band: 5 km
 - C-band: 10 km
- Performance requirements*
 - 2m/s rms speed up to 20 m/s
 - 10% rms speed above 20 m/s
 - 20° rms direction
- Instrument characteristics*
 - Antenna size: 3.5m x 5m
 - Instrument weight: ~305kg
 - Instrument DC power: ~780W

* current best estimates

Next Steps

- QuikSCAT Follow-on
 - Significant interest on the part of operational forecasters in the enhanced capabilities of an XOVWM
 - Anticipate decision early in CY08 on which option to pursue
 - We will be pursuing an FY10 budget initiative for this
- Timely access to data from Chinese and Indian scatterometers is being pursued via:
 - Bilateral arrangements
 - Proposed CEOS Constellation
 - Coordinating Group of Meteorological Satellites
 - WMO Satellite Program and World Weather Watch