Applications of Satellite Surface Vector Winds (SVW) in Models and Syntheses of Tropcial and Sub-Tropical Atmosphere-Ocean Interactions

Ralph F. Milliff and Jan Morzel

Colorado Research Associates (CoRA) Division, NorthWest Research Associates (NWRA)

OVWST Meeting, Salt Lake City; 5-7 July 2006

Four (loosely connected) Sub-Projects:

Mesoscale Convective System (MCS) Detection;

a multi-platform evaluation of SVW signals (i.e. convergence and divergence) that correlate with MCS development and rain events. *Brian Mapes and David Long; consultants.*

SVW Cross-Validation in Hurricanes;

comparisons of satellite SVW (wind and rain) retrievals with in-situ ocean drifters deployed in developing TC systems of the sub-tropical N. Atlantic. *David Long; consultant. Peter Niiler, Thomas Bengtsson; collaborators.*

[SVW] 4DVAR in the Intra-Americas Seas (IAS);

exploit [SVW] to guide ocean model 4DVAR assimilation and forecasts in the IAS *A. Moore (and IAS ROMS team); collaborators.*

[SVW] and Ocean General Circulation Model (OGCM) Uncertainty;

OGCM uncertainty quantification in global and regional simulations. Bill Large and Gokhan Danabasoglu; collaborators.

The Mesoscale Convective System (MCS) life cycle

Zonal Wind Posterior Mean Fields for a Single MJO Event

NOAA-CIRES/Climote Diognostics Center W/m-2

Surface Convergence and Atmospheric Deep Convection

left panel: daily composite convergence *(blue)* and divergence *(red)*

right panel: daily average OLR (*red* \rightarrow *deep conv*)

SVW Cross-Validation in Hurricanes:

Ultra-high resolution wind (and rain) retrievals vs. Minimet and other drifters Estimate drag coefficient functional form (and uncertainty) in hurricane winds

Ocean Drifter Dataset:2004 Hurricane Season, NW Atlantic

Air-Sea Bayesian Hierarchical Model

Milliff et al. (2003) JTech; Bengtsson et al. (2005) JGR

Ocean General Circulation Model (OGCM) and Ocean Forecast Model Applications of [SVW] from Bayesian Hierarchical Models (BHM)

Use SVW abundance and precision, and precisely characterized uncertainty, to deduce and distribute ocean model uncertainties (less well known)

OGCM Uncertainty Distribution (review)

CCSM Ocean Model Component response to [SVW] forcing during an MJO

• Variational DA

Regional Ocean Model System (ROMS) 4DVAR in Intra-Americas Seas (IAS)

. Sequential DA

Mediterranean Forecast System (MFS) Kalman Filter and Ensemble Initial Conditions

20 Nov; Zonal Velocity and Temperature Equatorial Sections

[SVW] to Identify Model Error in ROMS 4DVAR for the IAS

$$\begin{array}{ll} \underline{\text{Data Stage Distributions}} & (\text{likelihoods}) \\ \prod_{t=1}^{T} [S_t | W_t, \theta_S] \times \prod_{t=1}^{T} [A_t^w | W_t, \theta_{AW}] [A_t^p | P_t, \theta_{AP}] \times \prod_{t=T+1}^{T+L} [F_t^w | W_t, \theta_{FW}] [F_t^p | P_t, \theta_{FP}]. \\ \\ \text{QSCAT} & \text{ECMWF analyses} & \text{ECMWF forecasts} \end{array}$$

Process Model Stage Distributions (priors) "Stochastic Geostrophy" $[b_0] \times \prod_{t=1}^{T+L} [W_t | P_t, \theta_W] [P_t | b_t, \theta_P] [b_t | b_{t-1}, \theta_b]$

Where $[P_t|b_t, \theta_P]$ is given by $P_t = \Phi b_t + \epsilon_p$ for spatial eigenvectors Φ and amplitude coefficients *b*. In turn, $[b_t|b_{t-1}, \theta_b]$ is an autoregressive model for *b* as in $b_t = Gb_t + \epsilon_b$

Parameter Distributions

 $\theta_{S,AW,FW,AP,FP} = \{ \mathbf{H}_{S,AW,FW,AP,FP}, \ \sigma^2_{S,AW,FW,AP,FP} \}; \ \theta_P = \{ \Phi, \ \epsilon_p \}; \ \theta_b = \{ G, \ \epsilon_b \}; \ \dots$

Posterior Distribution

 $[W_t, P_t, b_t, \theta_{W,P,b,S,AW,FW,AP,FP} | S_t, A_t^W, A_t^P, F_t^W, F_t^P]$

BHM Ensemble Winds

10 members selected from the Posterior Distribution (blue)

20050207 - time step: 3

Ensemble mean wind (green); ECMWF Analysis wind (red)

BHM Ensemble Winds

10 realizations from BHM posterior distribution (blue); ensemble mean (green), ECMWF analysis (red)

Ensemble Initial Conditions

46N

44N

42N

40N

3BN

36N

34N

32N -

46N

44N ·

42N

40N

3BN ·

36N

34N

32N -

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

516

Day 14A SSH Standard Deviation *(cm)* 1ÓE 5Ė 15E 25E 3ÓE 35E 2ÔE Ó 3.5 4.5 0.5 1.5 2.5 0 2 3 4 SST Standard Deviation (°C) 5Ė 15E 25E 516 1ÓE 2ÔE 3ÓE 35E ó

MFS Ensemble Forecast Response

Day 3F

SSH Ensemble Mean (cm)

SSH Standard Deviation (cm)

MFS Ensemble Forecast Response

Day 10F

SSH Ensemble Mean (cm)

SSH Standard Deviation (cm)

Four (loosely connected) Sub-Projects:

Mesoscale Convective System (MCS) Detection;

a multi-platform evaluation of SVW signals (i.e. convergence and divergence) that correlate with MCS development and rain events. *Brian Mapes and David Long; consultants.*

SVW Cross-Validation in Hurricanes;

comparisons of satellite SVW (wind and rain) retrievals with in-situ ocean drifters deployed in developing TC systems of the sub-tropical N. Atlantic. *David Long; consultant. Peter Niiler, Thomas Bengtsson; collaborators.*

[SVW] 4DVAR in the Intra-Americas Seas (IAS);

exploit [SVW] to guide ocean model 4DVAR assimilation and forecasts in the IAS *A. Moore (and IAS ROMS team); collaborators.*

[SVW] and Ocean General Circulation Model (OGCM) Uncertainty;

OGCM uncertainty quantification in global and regional simulations. Bill Large and Gokhan Danabasoglu; collaborators.