

Application and Validation of Ultra High Resolution Wind, Backscatter, and Brightness Temperature

David G. Long

Brigham Young University

Objectives

Refine methods for spatial resolution enhancement

- Support land/ice studies and high resolution wind retrieval
- Apply resolution enhancement methods to WindSat
- Develop improved algorithms for ultra high resolution wind retrieval ambiguity removal
- Validate ultra high resolution winds in severe storms
- Add rain and quality assurance flagging for ultra high resolution winds
- Investigate the use of model-based wind field estimation with enhanced resolution backscatter measurements

SeaWinds Measurements

Resolution Improvement

• The spatial response function and sampling define the effective resolution exploited by SIR reconstruction

- AVE response is the weighted average of measurement responses covering each pixel
 - Incomplete reconstruction
 - First iteration of the SIR algorithm

AVE Response

Individual 6 x 25 km "Slice" responses = product of azimuth antenna pattern and Doppler/range filtering DGL Jul 2006

QuikSCAT Spatial Response Function

- Slices: spatial "rect" (1/0)
 - 8 sided figure
 - Nominally, ~6 km by 25 km
- Eggs: 2 dimensional polynomial
 - Nominally, ~ 25 km by 35 km
- Response function varies with azimuth angle and orbit position
 - Tabularized function
- Data and tables available from http://www.scp.byu.edu/software/Xshape/Xshape.htm

I.S. Ashcraft and D.G. Long, The spatial response function of SeaWinds backscatter measurements," in "Earth Observations Systems VIII," W.L. Barnes, ed., *Proceedings of SPIE Vol. 5151*, pp. 609-619, 3-6 Aug 2003.

Single Look UHR sigma-0 Images

High Resolution Wind Retrieval for SeaWinds

- QuikSCAT originally designed to make 25 km resolution ocean wind measurements
- Use reconstruction/resolution enhancement algorithm to produce 2.5 km/pixel sigma-0 estimates
- Estimate the wind at ultra high spatial resolution (UHR)
 - Value-added product
 - Useful for hurricane tracking, near-coastal studies

http://manati.orbit.nesdis.noaa.gov/cgi-bin/qscat_storm.pl

(color) QuikSCAT ultra high resolution (2.5 km/pixel) wind speed (barbs) conventional 25 km resolution L2B winds DGL Jul 2006

Buoy Comparisons*

50 km collocation radius w/only open ocean buoys

		speed	direction rms			
dataset	rms	bias	3-20 m/s	5-20 m/s	npts	
L2B	1.26	0.046	24.03	19.06	156592	} 25 km
L2B ed	1.23	0.027	18.84	16.14	151732	
UHR	1.58	-0.533	31.61	26.29	15286960	}2.5 km
UHR ed	1.56	-0.577	24.89	22.32	14578315	
CLO	1.58	-0.535	24.61	21.53	15286960	
CLO ed	1.58	-0.537	23.37	20.87	15173693	

CLO = UHR ambiguity closest to buoy ed = buoy and selected direction within 90 deg

*Thanks to Mike Freilich and Barry Vanhoff

UHR Validation with Buoys* Initial Results

* Thanks to Mike Freilich and Barry Vanhoff

UHR Validation with Buoys* Initial Results

* Thanks to Mike Freilich and Barry Vanhoff

UHR Validation with Buoys* Initial Results

* Thanks to Mike Freilich and Barry Vanhoff

Hurricane tracking

Postage stamp images of all storms during the QuikSCAT era processed and available on Paul Chang's web site

http://manati.orbit.nesdis.noaa.gov/cgi-bin/qscat_storm.pl

QuikSCAT Simultaneous Wind/Rain Validation

- QuikSCAT-derived rain rates vs TRMMderived rain rates & NEXRAD
 - QuikSCAT has higher variability
 - Broader coverage

QA Analysis Summary Compare new L2B with old

- 95% of 8 wvc × 8 wvc regions do not contain substantial ambiguity errors
- ~5% of the regions flagged with substantial ambiguity 'errors'
- Noisy wind vectors or ambiguity sets with limited solution vectors are also flagged
 - False alarm probability 1.5%
 - Missed detection probability 3% of regions w/ambiguity selection errors (corresponding to ~0.25% of total)
- Performance of new L2B is slightly worse at nadir and high wind speeds, similar elsewhere

Method described in: D.W. Draper and D.G. Long, An Assessment of SeaWinds on QuikSCAT Wind Retrieval, *Journal of Geophysical Research*, Vol. 107, No. C12, pp. 3212-3226, Dec. 2002.

Track comparisons for key 2005 storms

- Ultra high resolution winds
 - Direction not required
- UHR center fixes more accurately match "best-track" storm centers
 - More usable cases

QuikSCAT and SeaWinds Track Isabel

QuikSCAT and SeaWinds track hurricane Isabel from its formation near the Cape Verde Islands along its track across the Atlantic toward the US Eastern seaboard

LUNIT BADCE

Rain/Wind Backscatter Model Ku-band

• Model for measured backscatter σ_M^o

$$\sigma_{M}^{o} = \left(\sigma_{w}^{o} + \sigma_{sr}^{o}\right)\alpha + \sigma_{r}^{o}$$

Radar signal scattered by falling droplets σ^o_r
 Surface signal attenuated by atmospheric rain α
 Surface wind-induced σ^o_w backscatter perturbed by rain striking the water σ^o_{sr}

Ku-band Wind/Rain Model

Rain/wind model: $\sigma_m^\circ = \sigma_w^\circ \alpha + \sigma_{eff}^\circ$

Model parameters derived from colocated TRMM PR and QuikSCAT data

D.W. Draper and D.G. Long, Evaluating the Effect of Rain on SeaWinds Scatterometer Measurements, Journal of Geophysical Research, Vol. 109, No. C02005, doi:10.1029/2002JC001741, 2004.

Rain/Wind Backscatter Model C-band

• Model for measured backscatter σ_M^o

$$\sigma_M^o = \left(\sigma_w^o + \sigma_{sr}^o\right) \alpha + \sigma_r^o$$

- At C-band, attenuation and rain backscatter are negligible
- Surface perturbation can be important at high incidence angle
 - No significant pattern observed at low incidence angles

C-band Rain Effects

C-band Wind/Rain Model Rain/wind model: $\sigma_m^o = \sigma_w^o + \sigma_{eff}^o$

Model parameters derived from colocated TRMM PR and QuikSCAT data

C. Nie and D.G. Long, "A C-band Wind/Rain Backscatter Model," in review, IEEE TGARS.

University $\sigma^{o}(u, \chi, R) = GMF(u, \chi) + \sigma_{eff}(R)$ -Band Wind Rain Regimes

Regime 1: rain dominates wind backscatter - poor quality wind estimates \diamond

Regime 2: both wind and rain important - retrieve wind and rain rate \diamond

Regime 3: rain effects insignificant – wind estimates unaffected by rain \diamond Note: globally, only about 3% of all ERS far-swath data affected by rain

ERS Simultaneous Wind/Rain Retrieval

- Sensitivity of ERS sigma-0 measurements to rain in the outer swath suggest that simultaneous wind/rain retrieval possible for ERS
 - Response function-weighted rain rate
 - Wind estimates less noisy than at Ku-band
 - Beam filling

• Higher incidence angle range of ASCAT suggests higher rain sensitivity, can enable rain retrieval over much of swath

New QuikSCAT rain impact flag vs SWR

Brigham Young University

QuikSCAT SWR vs AMSR Rain General patterns similar, calibration offset Simultaneous Wind/Rain calibrated to TRMM PR

- AMSR calibrated to SSM/I

D.W. Draper and D.G. Long, Simultaneous Wind and Rain Retrieval Using SeaWinds Data, *IEEE Transactions on Geoscience and Remote Sensing*, Vol. 42, No. 7, pp. 1411-1423, 2004.

Wind dominated – rain has no impact

-Wind and rain

-Rain dominated

-wind inaccurate

Rain Flag ^t Frances (9/4/2004 23:15 UTC)

Simultaneous wind/rain retrieval regime estimates

Conclusions

Ultra high resolution winds

- Higher spatial resolution
- Higher noise level than L2B
- Demonstrated utility in hurricane tracking

Rain effects

- C-band scatterometry sensitive at higher incidence angles and rain rates
 - Can simultaneously retrieve wind and rain
- QuikSCAT SWR useful as a rain flag