Microwave Remote Sensing Laboratory UMassAmherst

Airborne Studies of High Wind and Rain Effects Using IWRAP

Robert F. Contreras, Stephen J. Frasier, and Tao Chu

> OVWST Meeting July 5-7, 2006 Salt Lake City, Utah

Department of Electrical & Computer Engineering

Outline

- Objectives
 - High wind and rain effects
- Method
 - Airborne measurements with IWRAP
 - Processing & analysis
- Results
 - Prior
 - Anticipated
- Timeline
 - Year 1 work: system upgrades and hurricane 2006 flights
 - Future work

Objectives: High Wind and Rain Effects

validate and refine space-based wind retrievals

- Effect of rain at Ku- and C-bands
- Prevalence and spatial variability of extreme winds
- Add to database of Ku- and C-band NRCS measurements

Relevant Science Questions

- During what conditions can the effect of rain be ignored or compensated for?
- How does C-band differ from Ku-band?
- Does rain masquerade as high/extreme winds?
- What is the effect of spatial variability of extreme winds?
- What is prevalence of extreme winds outside of hurricanes?

Methodology

- Airborne measurements using IWRAP and USFMR (next three years)
 - 2 hurricane seasons, 1 winter, involvement in International Polar Year
 - **Improvements**: increased Ku-band sensitivity, dualpolarization antenna, flights to address wind intensity and variabilities outside of TCs.
- Continuing analysis of past IWRAP and USFMR data:
 - 4 hurricane season (2002, 2003, 2004, 2005)
 - 3 winter experiments at midlatitudes (2003, 2005, 2006)

Microwave Remote Sensing Laboratory

Microwave Remote Sensing Laboratory

Processing & Analysis

Dept. of Electrical & Computer Engineering

Analysis: Rain Effects

- Ku- and C-band data will be <u>attenuation-corrected</u> using a dualfrequency technique (e.g. Mardiana et al., 2004) and binned in 1 km along track bins.
- 2) The first three harmonics, <u>A0, A1, and A2 will be fit</u> to the data, <u>wind</u> <u>vectors will be estimated</u> and the direction will be compared surface direction estimated from flight level winds.
- 3) The data will be stratified based on USFMR wind speed and rain rate.
- 1-3 will be carried out for NRCS <u>not corrected for attenuation</u> and compared which quantifies the effect of attenuation.
- 5) 1-3 will be carried out for <u>beam-integrated NRCS</u> which is analogous to QuikSCAT NRCS. This will be compared to 1 & 4 which quantifies the effect of scattering and attenuation.

Analysis: High Winds

- During rain-free conditions, periods and locations of <u>extreme wind</u> <u>conditions will be identified using USFMR.</u> Spatial variability will be quantified.
- 2) In the absence of rain, NRCS measurements will be binned over the width of IWRAP's swath for <u>successively larger along track distances</u>.
- 3) <u>Wind vectors</u> will be calculated for these varying bins and they will be compared for the same total area.
- During rain 1-3 will be carried out for <u>attenuation-corrected and beam-integrated</u> NRCS measurements. In addition rain variability will also be quantified.

Prior High Wind Results

MIRS

Rain Effect Results

Dept. of Electrical & Computer Engineering

11

Anticipated Results

- Geolocated, attenuation-corrected vector surface winds, as well as Z and Doppler velocities
- The effect of rain on Ku- and C-band scatterometry
- The prevalence of extreme winds outside hurricanes.

Timeline

- Year 1:
 - Perform instrument upgrades increasing Ku-band sensitivity
 - Install and deploy:
 - hurricane season 2006
 - midlatitude flights 2007
 - Process raw hurricane 2005 and winter 2006 data
 - Data Archive
 - Development of new data acquisition system in preparation for hurricane season 2007

Year 1: IWRAP Ku-Band system upgrade:

Fig.1: Front-End setup (Before)

Fig. 2: Front-End setup (after)

Parameters	Before	After
Vendor	Miteq	Miteq
Gain [dB]	48.0	49.4
Pout 1dB [dBm]	22.25	13.5
Noise Figure [dB]	4.08	1.14

Table 1: LNA comparison

Parameters	Before	After
Vendor	Ball	MicroAnt
Frequency [GHz]	13.6+/- 0.680	13.24, 13.6
Gain [dB]	24	32, 29
Cross Pol Isolation [dB]	-15	-25
Side Lobe Level [dB]	-18	-25
Scan angle [deg]	20 to 50	20, 40
Polarization	H and V	H and V

Table 2: Antenna Comparison

Dept. of Electrical & Computer Engineering

Future: Raw Data & Spectral Processing

Profile of spectra measured and processed by NOAA/NESDIS

Future: Raw Data & Spectral Processing

- Analysis of raw data collected by NOAA/NESDIS.
 The obstacle is it is Terabytes of data.
- Algorithm development for real-time radar processing of multimodal spectra.
- Implementation of algorithm in FPGA or in processing code for next generation IWRAP DAQ

Microwave Remote Sensing Laboratory

Year 1: Archive

Dept. of Electrical & Computer Engineering