Integrating the Distributed Oceanographic Match-Up Service into OceanWorks

Overview

Why DOMS is Needed?

- A wide user community seeks to match satellite to in situ observations to meet goals that include:
 - Satellite algorithm calibration, validation, and/or development
 - Decision support for planning future field campaigns
 - Investigations to support process studies, data synthesis, etc.

- The DOMS prototype focuses on algorithm calibration/validation.

- DOMS eliminates the need for one-off match-up programs that require satellite and in situ data to be housed on one’s local computer.

Architecture of the DOMS Prototype

- The prototype infuses common data access services at FSU, NCAR, and JPL.
- Data indexed using Apache-SOLR
- Extensible Data Gateway Environment (EDGE) - a data aggregation and query service that supports OpenSearch and metadata export
- In-situ data are indexed from data served via FSU - THREDDS
- JPL - NoSQL
- Satellite data are tiled and indexed using the NEXUS deep data platform.

Integrating DOMS into OceanWorks

- First development cycle for DOMS completed in spring 2017 with 2nd prototype at a technology readiness level (TRL) of 4.

- Through the OceanWorks project (started in September 2017), the team plans to achieve a TRL-6 by
 - Building new capability to support large-scale data queries enabling scalable data processing by external applications and services.
 - Implementing filters using data quality information, and
 - Building new capability to support large-scale data queries (e.g., satellite to in situ data matching, presently supporting DOMS at FSU)

- Integrating DOMS into OceanWorks via deployment to the AISt Managed Cloud Environment.

- Ongoing architectural changes to DOMS include
 - Enhancements to the data match-up capability
 - Harvesting the SOLR-indexed in situ data from the remote data hosts using the OpenSearch interface.

- These changes should eliminate the on-the-fly data movement and network stall overheads.

- They also will make the code ready for implementation in a cloud environment.

Vision for the Future

- Under OceanWorks, DOMS can address big data approaches to finding (1) problems with data used in calibration (satellite-to-in situ and satellite-to-satellite), and (2) physical relationships in the observed variables. For example,
 - Algorithm development depends highly on low-observations from moorings; however, in high winds moorings are riding very large waves and are suspected to report non-representative winds when the mooring is in the wave trough. Quantifying this problem requires collocating large numbers of satellite to in situ data.
 - Diurnal warming links SSTs, winds, and chlorophyll among other variables. To understand the physical relationships requires matching multiple data parameters across a range of observing platforms.

- Further DOMS enhancements being considered include the following:
 - Supporting satellite-to-satellite and in situ-to-in situ data matching,
 - Supporting satellite/in situ to numerical model matching,
 - Including additional high-priority science datasets.

Acknowledgements

- The DOMS project is supported via NASA's Earth Science Technology Office from the Advanced Information Systems Technology program. Separate awards presently supporting DOMS at FSU (NNX15AD09G), NCAR (NNX15AG22G), and JPL.

Search Domain, Match-Up Tolerances

- A GUI supports browsing and submitting match-up requests interactively
- Allows users to “test/evaluate” searches by returning metadata only, creating visualizations, and then follow-up with a full matched dataset
- Uses flexible filtering and query specification based on indexed search criteria

Prototype User Interface

- 1st Prototype Steps
 1. Select Satellite Source
 2. Select Date Range
 3. Select Depth Range
 4. Select Match-Up Tolerances (Space & Time)

- 2nd GUI provides separate screens to select primary and secondary data along with filter criteria. Changes recommended by ESP testbed external review.

Conceptual design schematic for the DOMS prototype. The system relies on a distributed set of data hosts and infused software on the host servers.